On the Rate of Convergence of Loop-Erased Random Walk to SLE2

被引:11
|
作者
Benes, Christian [1 ]
Viklund, Fredrik Johansson [2 ]
Kozdron, Michael J. [3 ]
机构
[1] CUNY Brooklyn Coll, Dept Math, Brooklyn, NY 11210 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BROWNIAN INTERSECTION EXPONENTS; CONFORMAL-INVARIANCE; VALUES; PLANE;
D O I
10.1007/s00220-013-1666-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a rate of convergence of the Loewner driving function for a planar loop-erased random walk to Brownian motion with speed 2 on the unit circle, the Loewner driving function for radial SLE2. The proof uses a new estimate of the difference between the discrete and continuous Green's functions that is an improvement over existing results for the class of domains we consider. Using the rate for the driving process convergence along with additional information about SLE2, we also obtain a rate of convergence for the paths with respect to the Hausdorff distance.
引用
收藏
页码:307 / 354
页数:48
相关论文
共 50 条
  • [31] EXPONENTIAL TAIL BOUNDS FOR LOOP-ERASED RANDOM WALK IN TWO DIMENSIONS
    Barlow, Martin T.
    Masson, Robert
    ANNALS OF PROBABILITY, 2010, 38 (06): : 2379 - 2417
  • [32] The probability that planar loop-erased random walk uses a given edge
    Lawler, Gregory F.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 13
  • [33] Scaling limit of the loop-erased random walk Green's function
    Benes, Christian
    Lawler, Gregory F.
    Viklund, Fredrik
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 271 - 319
  • [34] LOOP-ERASED SELF-AVOIDING RANDOM-WALK IN 2 AND 3 DIMENSIONS
    LAWLER, GF
    JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) : 91 - 108
  • [35] Loop-Erased Walks and Random Matrices
    Jonas Arista
    Neil O’Connell
    Journal of Statistical Physics, 2019, 177 : 528 - 567
  • [36] Markov chain intersections and the loop-erased walk
    Lyons, R
    Peres, Y
    Schramm, O
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (05): : 779 - 791
  • [37] Loop-Erased Walks and Random Matrices
    Arista, Jonas
    O'Connell, Neil
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (3) : 528 - 567
  • [38] Hausdorff dimension of the scaling limit of loop-erased random walk in three dimensions
    Shiraishi, Daisuke
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 791 - 834
  • [39] SLE on Doubly-Connected Domains and the Winding of Loop-Erased Random Walks
    Christian Hagendorf
    Pierre Le Doussal
    Journal of Statistical Physics, 2008, 133 : 231 - 254
  • [40] SLE on Doubly-Connected Domains and the Winding of Loop-Erased Random Walks
    Hagendorf, Christian
    Le Doussal, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (02) : 231 - 254