Marching schemes for Cauchy wave propagation problems in laterally varying waveguides

被引:1
|
作者
Li, Peng [1 ]
Liu, Keying [1 ,2 ]
Zhong, Weizhou [2 ,3 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Econ & Finance, Xian 710061, Shaanxi, Peoples R China
[3] Huaqiao Univ, Sch Business Adm, Quanzhou 362021, Peoples R China
来源
关键词
Cauchy problem; propagating mode; marching method; waveguide; Helmholtz equation; LOCAL ORTHOGONAL TRANSFORM; LEAST-SQUARES METHOD; HELMHOLTZ-EQUATION; INVERSE PROBLEMS; BACKPROPAGATION METHOD; PRESSURE; SCATTERING;
D O I
10.1515/jiip-2016-0044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper intends to develop practical marching schemes for Cauchy problems of the Helmholtz equation in laterally varying waveguides. We arrive at a stable representation of the marching solutions in waveguides. Based on the representation, a second-order marching scheme is then constructed to eliminate the ill-conditioning and compute the wave propagation in wave guides with laterally variable mediums. In the end, extensive experiments are implemented to verify the efficiency and accuracy of the marching scheme in various waveguides, and we also point out the application scope of the scheme.
引用
收藏
页码:259 / 276
页数:18
相关论文
共 50 条
  • [21] WAVE PROPAGATION IN PLASMA WAVEGUIDES
    WEBBER, J
    SIMS, GD
    RADIO SCIENCE, 1966, 1 (06) : 659 - &
  • [22] WAVE PROPAGATION IN RANDOM WAVEGUIDES
    Jung, Chang-Yeol
    Mahalov, Alex
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (01) : 147 - 159
  • [23] WAVE PROPAGATION IN OPTICAL WAVEGUIDES
    Ciraolo, Giulio
    MATEMATICHE, 2005, 60 (02): : 445 - 450
  • [24] WAVE PROPAGATION IN PERIODIC WAVEGUIDES
    BRACKELMANN, W
    ARCHIV DER ELEKTRISCHEN UND UBERTRAGUNG, 1969, 23 (09): : 439 - +
  • [25] Flexural Wave Propagation in Slowly Varying Random Waveguides Using a Finite Element Approach
    Fabro, A. T.
    Ferguson, N. S.
    Mace, B. R.
    13TH INTERNATIONAL CONFERENCE ON MOTION AND VIBRATION CONTROL (MOVIC 2016) AND THE 12TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN STRUCTURAL DYNAMICS (RASD 2016), 2016, 744
  • [26] Marching finite-element schemes for nonlinear optical propagation
    Brandao, ML
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: COMPUTER SCIENCE III, 2002, : 31 - 35
  • [27] Marching finite-element schemes for nonlinear optical propagation
    Brandao, ML
    Hernández-Figueroa, HE
    IMOC 2001: PROCEEDINGS OF THE 2001 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE: THE CHALLENGE OF THE NEW MILLENIUM: TECHNOLOGICAL DEVELOPMENT WITH ENVIRONMENTAL CONSCIOUSNESS, 2001, : 457 - 460
  • [28] GUIDED WAVE ATTENUATION IN LATERALLY VARYING MEDIA
    KENNETT, BLN
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1990, 100 (03) : 415 - 422
  • [29] LG WAVE-PROPAGATION IN A LATERALLY VARYING CRUST AND THE DISTRIBUTION OF THE APPARENT QUALITY FACTOR IN CENTRAL FRANCE
    CAMPILLO, M
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B12): : 12604 - 12614
  • [30] SH WAVE PROPAGATION IN LATERALLY HETEROGENEOUS MEDIUM
    Roy, A.
    VIBRATION PROBLEMS, ICOVP-2007, 2008, 126 : 335 - 338