SPECTRAL STABILITY ESTIMATES FOR ELLIPTIC OPERATORS SUBJECT TO DOMAIN TRANSFORMATIONS WITH NON-UNIFORMLY BOUNDED GRADIENTS

被引:6
|
作者
Barbatis, Gerassimos [1 ]
Lamberti, Pier Domenico [2 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
[2] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
DIRICHLET; EIGENFUNCTIONS; EIGENVALUES;
D O I
10.1112/S0025579311002397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider uniformly elliptic operators with Dirichlet or Neumann homogeneous boundary conditions on a domain Omega in R-N. We consider deformations phi(Omega) of Omega obtained by means of a locally Lipschitz homeomorphism phi and we estimate the variation of the eigenfunctions and eigenvalues upon variation of phi. We prove general stability estimates without assuming uniform upper bounds for the gradients of the maps phi. As an application, we obtain estimates on the rate of convergence for eigenvalues and eigenfunctions when a domain with an outward cusp is approximated by a sequence of Lipschitz domains.
引用
收藏
页码:324 / 348
页数:25
相关论文
共 40 条
  • [21] Spectral stability of Dirichlet second order uniformly elliptic operators
    Burenkov, Victor I.
    Lamberti, Pier Domenico
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (07) : 1712 - 1740
  • [22] Existence and L?-estimates for non-uniformly elliptic equations with non-polynomial growths
    Benslimane, Omar
    Aberqi, Ahmed
    Elmassoudi, Mhamed
    FILOMAT, 2023, 37 (16) : 5509 - 5522
  • [23] MULTIDIMENSIONAL SPECTRAL ASYMPTOTICS FOR ELLIPTIC-OPERATORS IN A BOUNDED DOMAIN
    KOZLOV, SM
    MATHEMATICS OF THE USSR-IZVESTIYA, 1984, 48 (01): : 49 - 71
  • [24] REGULARITY FOR NON-UNIFORMLY ELLIPTIC DOUBLE OBSTACLE PROBLEMS WITH FRACTIONAL MAXIMAL OPERATORS
    Tran, Gia Khanh
    Khuu, Tan Dat
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2024, 16 (03): : 251 - 268
  • [25] Robust species-optima estimates from non-uniformly sampled environmental gradients
    Solomon, Kelsey J.
    Stevenson, R. Jan
    Surratt, Donatto
    Whelan, Kevin R. T.
    Tobias, Franco A. C.
    Johnson, Katherine M.
    Gaiser, Evelyn E.
    JOURNAL OF PALEOLIMNOLOGY, 2025,
  • [26] Local Holder estimates for non-uniformly variable exponent elliptic equations in divergence form
    Yao, Fengping
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (01) : 211 - 224
  • [27] SPECTRAL STABILITY ESTIMATES OF NEUMANN DIVERGENCE FORM ELLIPTIC OPERATORS
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    MATHEMATICAL REPORTS, 2021, 23 (1-2): : 131 - 147
  • [28] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Gol'dshtein, Vladimir
    Pchelintsev, Valerii
    Ukhlov, Alexander
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [29] Spectral stability estimates for the eigenfunctions of second order elliptic operators
    Burenkov, Victor I.
    Feleqi, Ermal
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (11-12) : 1357 - 1369
  • [30] Spectral stability estimates of Dirichlet divergence form elliptic operators
    Vladimir Gol’dshtein
    Valerii Pchelintsev
    Alexander Ukhlov
    Analysis and Mathematical Physics, 2020, 10