On the (Signless) Laplacian Permanental Polynomials of Graphs

被引:5
|
作者
Liu, Shunyi [1 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
(Signless) Laplacian permanental polynomial; Copermanental; Coefficient;
D O I
10.1007/s00373-019-02033-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial.
引用
收藏
页码:787 / 803
页数:17
相关论文
共 50 条
  • [41] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [42] ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS
    Pirzada, S.
    Ganie, H. A.
    Alghamdi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 407 - 417
  • [43] On the smallest signless Laplacian eigenvalue of graphs
    Oboudi, Mohammad Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 637 : 138 - 156
  • [44] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [45] SPECTRA OF CLOSENESS LAPLACIAN AND CLOSENESS SIGNLESS LAPLACIAN OF GRAPHS
    Zheng, Lu
    Zhou, Bo
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3525 - 3543
  • [46] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [47] Signless Laplacian eigenvalues and circumference of graphs
    Wang, JianFeng
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1610 - 1617
  • [48] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621
  • [49] On (distance) signless Laplacian spectra of graphs
    Rakshith, B. R.
    Das, Kinkar Chandra
    Sriraj, M. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 67 (1-2) : 23 - 40
  • [50] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713