Lieb-Thirring inequalities on the torus

被引:7
|
作者
Ilyin, A. A. [1 ]
Laptev, A. A. [2 ,3 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
[2] Imperial Coll London, London, England
[3] Inst Mittag Leffler, Djursholm, Sweden
基金
俄罗斯科学基金会;
关键词
Lieb-Thirring inequalities; Schrodinger operators; interpolation inequalities; attractors; fractal dimension; NAVIER-STOKES EQUATIONS; FRACTAL DIMENSION; SIMPLE PROOF; ATTRACTORS; CONSTANTS; BOUNDS; TURBULENCE; EXPONENTS; SYSTEMS;
D O I
10.1070/SM8641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Lieb-Thirring inequalities on the d-dimensional torus with arbitrary periods. In the space of functions with zero average with respect to the shortest coordinate we prove the Lieb-Thirring inequalities for the.-moments of the negative eigenvalues with constants independent of ratio of the periods. Applications to the attractors of the damped Navier-Stokes system are given.
引用
收藏
页码:1410 / 1434
页数:25
相关论文
共 50 条