Data-Driven Attack Anomaly Detection in Public Transport Networks

被引:0
|
作者
Rui, Yin [1 ]
Wong, Nicholas Heng Loong
Guo, Huaqun [2 ]
Goh, Wang Ling [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Intrusion detection; self-organizing map; clustering; ensemble learning; transport networks; INTRUSION;
D O I
10.1109/vts-apwcs.2019.8851637
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a method for attack detection in public transport networks. Through unsupervised machine learning, the daily data of the transportation system is clustered and a training model is established. Improved accuracy is achieved through self-organizing mapping and ensemble learning. We then apply the clustering model to assess the performance of the attack anomaly detection.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Big data-driven anomaly detection in cellular networks
    Hussain, Bilal
    Du, Qinghe
    Ren, Pinyi
    [J]. 2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 678 - 683
  • [2] Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks
    Li, Gang
    He, Bin
    Huang, Hongwei
    Tang, Limin
    [J]. SENSORS, 2016, 16 (10)
  • [3] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [4] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [5] Data-Driven Network Intelligence for Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. IEEE NETWORK, 2019, 33 (03): : 88 - 95
  • [6] Data-Driven Attack Detection for Linear Systems
    Krishnan, Vishaal
    Pasqualetti, Fabio
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 671 - 676
  • [7] Big Data-driven Automated Anomaly Detection and Performance Forecasting in Mobile Networks
    Moysen, Jessica
    Ahmed, Furqan
    Garcia-Lozano, Mario
    Niemela, Jarno
    [J]. 2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [8] Data-driven Management of Dynamic Public Transport
    Horazdovsky, Patrik
    Novotny, Vojtech
    Svitek, Miroslav
    [J]. 2018 SMART CITY SYMPOSIUM PRAGUE (SCSP), 2018,
  • [9] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688
  • [10] Audio Data-driven Anomaly Detection for Induction Motor Based on Generative Adversarial Networks
    Shim, Jaehoon
    Joung, Taesuk
    Lee, Sangwon
    Ha, Jung-Ik
    [J]. 2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,