Data visualization tools for 3SAT instances

被引:0
|
作者
García-Ortegón, JM [1 ]
Torres-Jiménez, J [1 ]
机构
[1] ITESM Cuernavaca, AP 99-C, Cuernavaca 62490, Morelos, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a set of data visualization tools that could lead to a better understanding of the conditions that make of a SAT instance a hard one. The visualization techniques included in this work are used to make evident the relationships between the SAT-variables in function of their distribution, signs and combinations of signs in the clauses. Using this information, the user may identify patterns associated with the hardness of a SAT instance which gives a more flexible measurement of the instance's hardness than just the relationship between the number of clauses (M) and the number of variables (N), It could be even possible to use the developed data visualization tools to determine if a specific solution method is best suitable for a specific SAT instance.
引用
收藏
页码:318 / +
页数:3
相关论文
共 50 条
  • [21] A new reduction from 3SAT to n-partite graphs
    Hulme, Daniel J.
    Hirsch, Robin
    Buxton, Bernard F.
    Lotto, R. Beau
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 235 - +
  • [22] HyperSAT a new generator for 3-SAT instances
    Segura-Salazar, J
    Torres-Jiménez, J
    ICCIMA 2001: FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2001, : 323 - 327
  • [23] 3SAT on an all-to-all-connected CMOS Ising solver chip
    Cilasun, Huesrev
    Zeng, Ziqing
    Ramprasath, S.
    Kumar, Abhimanyu
    Lo, Hao
    Cho, William
    Moy, William
    Kim, Chris H.
    Karpuzcu, Ulya R.
    Sapatnekar, Sachin S.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Polynomial-Time Reductions from 3SAT to Kurotto and Juosan Puzzles
    Iwamoto, Chuzo
    Ibusuki, Tatsuaki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (03) : 500 - 505
  • [25] Locality in Random SAT Instances
    Giraldez-Cru, Jesus
    Levy, Jordi
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 638 - 644
  • [26] On the Modularity of Industrial SAT Instances
    Ansotegui, Carlos
    Levy, Jordi
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2011, 232 : 11 - 20
  • [27] On the Structure of Industrial SAT Instances
    Ansotegui, Carlos
    Luisa Bonet, Maria
    Levy, Jordi
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2009, 5732 : 127 - +
  • [28] Computational complexity of some restricted instances of 3-SAT
    Berman, Piotr
    Karpinski, Marek
    Scott, Alexander D.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (05) : 649 - 653
  • [29] The maximum length of prime implicates for instances of 3-SAT
    Dunne, PE
    BenchCapon, TJM
    ARTIFICIAL INTELLIGENCE, 1997, 92 (1-2) : 317 - 329
  • [30] SATQUBOLIB: A Python']Python Framework for Creating and Benchmarking (Max-)3SAT QUBOs
    Zielinski, Sebastian
    Benkard, Magdalena
    Nusslein, Jonas
    Linnhoff-Popien, Claudia
    Feld, Sebastian
    INNOVATIONS FOR COMMUNITY SERVICES, I4CS 2024, 2024, 2109 : 47 - 65