Charge qubit in van der Waals heterostructures

被引:14
|
作者
Lucatto, Bruno [1 ]
Koda, Daniel S. [1 ,3 ]
Bechstedt, Friedhelm [2 ]
Marques, Marcelo [1 ]
Teles, Lara K. [1 ]
机构
[1] Inst Tecnol Aeronaut, DCTA, Grp Mat Semicond & Nanotecnol, BR-12228900 Sao Jose Dos Campos, Brazil
[2] Friedrich Schiller Univ, Inst Festkorpertheorie & Opt, Max Wien Pl 1, D-07743 Jena, Germany
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
巴西圣保罗研究基金会;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.100.121406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this Rapid Communication, we develop the concept of charge qubits in van der Waals heterostructures. A theoretical proof of concept is provided for the ZrSe2/SnSe2 system, in which a framework connecting the electronic structure with quantum information is described. The quantum state is prepared by applying a vertical electric field, manipulated by short field pulses, and measured via electric currents. The proposed qubit is robust, operational at high temperature, and compatible with two-dimensional material technology, opening different avenues for the field.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Superconducting Qubit Based on Twisted Cuprate Van der Waals Heterostructures
    Brosco, Valentina
    Serpico, Giuseppe
    Vinokur, Valerii
    Poccia, Nicola
    Vool, Uri
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [2] Mapping the ultrafast charge transfer in van der Waals heterostructures
    Plankl, Markus
    Zizlsperger, Martin
    Moosharmmer, Fabian
    Schiegl, Felix
    Sandner, Fabian
    Siday, Thomas
    Huber, Markus A.
    Boland, Jessica L.
    Cocker, Tyler L.
    Huber, Rupert
    [J]. 2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,
  • [3] Charge Sampling Photodetector Based on van der Waals Heterostructures
    Zhou, Jiachao
    Li, Lingfei
    Qadir, Akeel
    Li, Hanxi
    Lv, Jianhang
    Shehzad, Khurram
    Xu, Xinyi
    Liu, Lixiang
    Tian, Feng
    Liu, Wei
    Chen, Li
    Yu, Li
    Su, Xin
    Bodepudi, Srikrishna Chanakya
    Hu, Huan
    Zhao, Yuda
    Yu, Bin
    Wang, Xiaomu
    Xu, Yang
    [J]. ADVANCED OPTICAL MATERIALS, 2022, 10 (24)
  • [4] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [5] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [6] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2
  • [7] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    [J]. Nature, 2013, 499 : 419 - 425
  • [8] Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures
    Krause, R.
    Aeschlimann, S.
    Chavez-Cervantes, M.
    Perea-Causin, R.
    Brem, S.
    Malic, E.
    Forti, S.
    Fabbri, F.
    Coletti, C.
    Gierz, I
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (27)
  • [9] Control of spin-charge conversion in van der Waals heterostructures
    Galceran, Regina
    Tian, Bo
    Li, Junzhu
    Bonell, Frederic
    Jamet, Matthieu
    Vergnaud, Celine
    Marty, Alain
    Garcia, Jose H.
    Sierra, Juan F.
    Costache, Marius, V
    Roche, Stephan
    Valenzuela, Sergio O.
    Manchon, Aurelien
    Zhang, Xixiang
    Schwingenschlogl, Udo
    [J]. APL MATERIALS, 2021, 9 (10):
  • [10] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    [J]. Nature Reviews Materials, 1