Superconducting Qubit Based on Twisted Cuprate Van der Waals Heterostructures

被引:7
|
作者
Brosco, Valentina [1 ,2 ,3 ]
Serpico, Giuseppe [4 ,5 ]
Vinokur, Valerii [6 ,7 ]
Poccia, Nicola [8 ]
Vool, Uri [4 ]
机构
[1] Univ Roma La Sapienza, Inst Complex Syst ISC, Consiglio Nazl Ric, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Phys Dept, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] Ctr Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy
[4] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[5] Univ Naples Federico II, Dept Phys, Via Cintia, I-80126 Naples, Italy
[6] Terra Quantum AG, Kornhausstr 25, CH-9000 St Gallen, Switzerland
[7] CUNY City Coll, Phys Dept, 160 Convent Ave, New York, NY 10031 USA
[8] Leibniz Inst Solid State & Mat Sci Dresden IFW Dre, D-01069 Dresden, Germany
基金
欧洲研究理事会;
关键词
JUNCTIONS; CIRCUITS; DYNAMICS; IMPACT; STATE;
D O I
10.1103/PhysRevLett.132.017003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Van-der-Waals assembly enables the fabrication of novel Josephson junctions featuring an atomically sharp interface between two exfoliated and relatively twisted Bi2Sr2CaCu2O8 thorn x (Bi2212) flakes. In a range of twist angles around 45 degrees, the junction provides a regime where the interlayer two-Cooper pair tunneling dominates the current-phase relation. Here we propose employing this novel junction to realize a capacitively shunted qubit that we call flowermon. The d-wave nature of the order parameter endows the flowermon with inherent protection against charge-noise-induced relaxation and quasiparticle-induced dissipation. This inherently protected qubit paves the way to a new class of high-coherence hybrid superconducting quantum devices based on unconventional superconductors.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Twisted cuprate van der Waals heterostructures with controlled Josephson coupling
    Martini, Mickey
    Lee, Yejin
    Confalone, Tommaso
    Shokri, Sanaz
    Saggau, Christian N.
    Wolf, Daniel
    Gu, Genda
    Watanabe, Kenji
    Taniguchi, Takashi
    Montemurro, Domenico
    Vinokur, Valerii M.
    Nielsch, Kornelius
    Poccia, Nicola
    [J]. MATERIALS TODAY, 2023, 67 : 106 - 112
  • [2] Superconducting Quantum Interference in Twisted van der Waals Heterostructures
    Farrar, Liam S.
    Nevill, Aimee
    Lim, Zhen Jieh
    Balakrishnan, Geetha
    Dale, Sara
    Bending, Simon J.
    [J]. NANO LETTERS, 2021, 21 (16) : 6725 - 6731
  • [3] Charge qubit in van der Waals heterostructures
    Lucatto, Bruno
    Koda, Daniel S.
    Bechstedt, Friedhelm
    Marques, Marcelo
    Teles, Lara K.
    [J]. PHYSICAL REVIEW B, 2019, 100 (12)
  • [4] Exploring the Stability of Twisted van der Waals Heterostructures
    Silva, Andrea
    Claerbout, Victor E. P.
    Polcar, Tomas
    Kramer, Denis
    Nicolini, Paolo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45214 - 45221
  • [5] Preface to Special Topic on Twisted van der Waals Heterostructures
    Jun Zhang
    Zhongming Wei
    [J]. Journal of Semiconductors, 2023, 44 (01) : 19 - 20
  • [6] Preface to Special Topic on Twisted van der Waals Heterostructures
    Zhang, Jun
    Wei, Zhongming
    [J]. JOURNAL OF SEMICONDUCTORS, 2023, 44 (01)
  • [7] Encapsulating High-Temperature Superconducting Twisted van der Waals Heterostructures Blocks Detrimental Effects of Disorder
    Lee, Yejin
    Martini, Mickey
    Confalone, Tommaso
    Shokri, Sanaz
    Saggau, Christian N.
    Wolf, Daniel
    Gu, Genda
    Watanabe, Kenji
    Taniguchi, Takashi
    Montemurro, Domenico
    Vinokur, Valerii M.
    Nielsch, Kornelius
    Poccia, Nicola
    [J]. ADVANCED MATERIALS, 2023, 35 (15)
  • [8] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [9] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [10] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2