Cuspidal representations in the cohomology of Deligne-Lusztig varieties for GL(2) over finite rings

被引:0
|
作者
Ito, Tetsushi [1 ]
Tsushima, Takahiro [2 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, Japan
[2] Chiba Univ, Fac Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
关键词
STABLE REDUCTION; LINEAR-GROUPS; LEVEL;
D O I
10.1007/s11856-018-1717-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define closed subvarieties of some Deligne-Lusztig varieties for GL(2) over finite rings and study their A ' etale cohomology. As a result, we show that cuspidal representations appear in it. Such closed varieties are studied in [Lus2] in a special case. We can do the same things for a Deligne-Lusztig variety associated to a quaternion division algebra over a non-archimedean local field. A product of such varieties can be regarded as an affine bundle over a curve. The base curve appears as an open subscheme of a union of irreducible components of the stable reduction of the Lubin-Tate curve in a special case. Finally, we state some conjecture on a part of the stable reduction using the above varieties. This is an attempt to understand bad reduction of Lubin-Tate curves via Deligne-Lusztig varieties.
引用
收藏
页码:877 / 926
页数:50
相关论文
共 50 条
  • [31] The dimension of some affine Deligne-Lusztig varieties
    Viehmann, Eva
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (03): : 513 - 526
  • [32] Irreducible components of affine Deligne-Lusztig varieties
    Nie, Sian
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (02) : 433 - 510
  • [33] Affine Deligne-Lusztig varieties of higher level and the local Langlands correspondence for GL2
    Ivanov, A. B.
    ADVANCES IN MATHEMATICS, 2016, 299 : 640 - 686
  • [35] Translation by the full twist and Deligne-Lusztig varieties
    Bonnafe, Cedric
    Dudas, Olivier
    Rouquier, Raphael
    JOURNAL OF ALGEBRA, 2020, 558 : 129 - 145
  • [36] AFFINE DELIGNE-LUSZTIG VARIETIES AND THE ACTION OF J
    Chen, Miaofen
    Viehmann, Eva
    JOURNAL OF ALGEBRAIC GEOMETRY, 2018, 27 (02) : 273 - 304
  • [37] Derived categories and Deligne-Lusztig varieties II
    Bonnafe, Cedric
    Dat, Jean-Francois
    Rouquier, Raphael
    ANNALS OF MATHEMATICS, 2017, 185 (02) : 609 - 670
  • [38] Affine Deligne-Lusztig varieties at infinite level
    Chan, Charlotte
    Ivanov, Alexander
    MATHEMATISCHE ANNALEN, 2021, 380 (3-4) : 1801 - 1890
  • [39] FINITENESS PROPERTIES OF AFFINE DELIGNE-LUSZTIG VARIETIES
    Hamacher, Paul
    Viehmann, Eva
    DOCUMENTA MATHEMATICA, 2020, 25 : 899 - 910
  • [40] DIMENSIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES
    Goertz, Ulrich
    He, Xuhua
    DOCUMENTA MATHEMATICA, 2010, 15 : 1009 - 1028