Likelihood estimation for longitudinal zero-inflated power series regression models

被引:10
|
作者
Bahrami Samani, E. [1 ]
Amirian, Y. [1 ]
Ganjali, M. [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
关键词
zero-inflated power series regression model; dispersion index; longitudinal count variable; simulation studies; COUNT DATA; BINOMIAL REGRESSION; POISSON REGRESSION; LOCAL INFLUENCE; SCORE TEST; DISTRIBUTIONS;
D O I
10.1080/02664763.2012.699951
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a zero-inflated power series regression model for longitudinal count data with excess zeros is presented. We demonstrate how to calculate the likelihood for such data when it is assumed that the increment in the cumulative total follows a discrete distribution with a location parameter that depends on a linear function of explanatory variables. Simulation studies indicate that this method can provide improvements in obtaining standard errors of the estimates. We also calculate the dispersion index for this model. The influence of a small perturbation of the dispersion index of the zero-inflated model on likelihood displacement is also studied. The zero-inflated negative binomial regression model is illustrated on data regarding joint damage in psoriatic arthritis.
引用
收藏
页码:1965 / 1974
页数:10
相关论文
共 50 条
  • [21] Marginal zero-inflated regression models for count data
    Martin, Jacob
    Hall, Daniel B.
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1807 - 1826
  • [22] Zero-inflated Bell regression models for count data
    Lemonte, Artur J.
    Moreno-Arenas, German
    Castellares, Fredy
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 265 - 286
  • [23] Power and sample size calculations for Poisson and zero-inflated Poisson regression models
    Channouf, Nabil
    Fredette, Marc
    MacGibbon, Brenda
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 241 - 251
  • [24] Joint model for longitudinal mixture of normal and zero-inflated power series correlated responsesAbbreviated title:mixture of normal and zero-inflated power series random-effects model
    Sharifian, Nastaran
    Bahrami Samani, Ehsan
    Ganjali, Mojtaba
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (02) : 117 - 140
  • [25] Zero-inflated modeling part I: Traditional zero-inflated count regression models, their applications, and computational tools
    Young, Derek S.
    Roemmele, Eric S.
    Yeh, Peng
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (01):
  • [26] The Destructive Zero-Inflated Power Series Cure Rate Models for Carcinogenesis Studies
    Pescim, Rodrigo R.
    Suzuki, Adriano K.
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2022, 20 (05) : 587 - 604
  • [27] Markov zero-inflated Poisson regression models for a time series of counts with excess zeros
    Wang, PM
    [J]. JOURNAL OF APPLIED STATISTICS, 2001, 28 (05) : 623 - 632
  • [28] Estimation of zero-inflated bivariate Poisson regression with missing covariates
    Kouakou, Konan Jean Geoffroy
    Hili, Ouagnina
    Dupuy, Jean-Francois
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (20) : 7216 - 7243
  • [29] Estimation and selection for spatial zero-inflated count models
    Shen, Chung-Wei
    Chen, Chun-Shu
    [J]. ENVIRONMETRICS, 2024, 35 (04)
  • [30] Pair copula construction for longitudinal data with zero-inflated power series marginal distributions
    Sefidi, S.
    Ganjali, Mojtaba
    Baghfalaki, T.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (02) : 233 - 249