Likelihood estimation for longitudinal zero-inflated power series regression models

被引:10
|
作者
Bahrami Samani, E. [1 ]
Amirian, Y. [1 ]
Ganjali, M. [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
关键词
zero-inflated power series regression model; dispersion index; longitudinal count variable; simulation studies; COUNT DATA; BINOMIAL REGRESSION; POISSON REGRESSION; LOCAL INFLUENCE; SCORE TEST; DISTRIBUTIONS;
D O I
10.1080/02664763.2012.699951
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a zero-inflated power series regression model for longitudinal count data with excess zeros is presented. We demonstrate how to calculate the likelihood for such data when it is assumed that the increment in the cumulative total follows a discrete distribution with a location parameter that depends on a linear function of explanatory variables. Simulation studies indicate that this method can provide improvements in obtaining standard errors of the estimates. We also calculate the dispersion index for this model. The influence of a small perturbation of the dispersion index of the zero-inflated model on likelihood displacement is also studied. The zero-inflated negative binomial regression model is illustrated on data regarding joint damage in psoriatic arthritis.
引用
收藏
页码:1965 / 1974
页数:10
相关论文
共 50 条
  • [1] Likelihood-based tests in zero-inflated power series models
    Zavaleta, Katherine E. C.
    Cancho, Vicente G.
    Lemonte, Artur J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (03) : 443 - 460
  • [2] Time series regression models for zero-inflated proportions
    Axalan, A.
    Ghahramani, M.
    Slonowsky, D.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (08) : 1793 - 1813
  • [3] Estimation of mediation effects for zero-inflated regression models
    Wang, Wei
    Albert, Jeffrey M.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (26) : 3118 - 3132
  • [4] Zero-inflated models and estimation in zero-inflated Poisson distribution
    Wagh, Yogita S.
    Kamalja, Kirtee K.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2248 - 2265
  • [5] Analysis of joint modeling of longitudinal zero-inflated power series and zero-inflated time to event data
    Zeinali Najafabadi, Mojtaba
    Bahrami Samani, Ehsan
    Ganjali, Mojtaba
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2020, 30 (05) : 854 - 872
  • [6] SPLINE REGRESSION FOR ZERO-INFLATED MODELS
    Opitz, T.
    Tramini, P.
    Molinari, N.
    [J]. JP JOURNAL OF BIOSTATISTICS, 2013, 9 (01) : 53 - 66
  • [7] Zero-Inflated Poisson Regression for Longitudinal Data
    Hasan, M. Tariqul
    Sneddon, Gary
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (03) : 638 - 653
  • [8] Robust Estimation for Zero-Inflated Poisson Regression
    Hall, Daniel B.
    Shen, Jing
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 237 - 252
  • [9] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Garay, Aldo M.
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Lachos, Victor H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1304 - 1318
  • [10] Bayesian Analysis for the Zero-inflated Regression Models
    Jane, Hakjin
    Kang, Yunhee
    Lee, S.
    Kim, Seong W.
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (04) : 603 - 613