Adaptive Proposal Construction for Reversible Jump MCMC

被引:10
|
作者
Ehlers, Ricardo S. [1 ]
Brooks, Stephen P. [2 ]
机构
[1] Univ Fed Parana, Dept Stat, BR-80060000 Curitiba, Parana, Brazil
[2] Univ Cambridge, Stat Lab, Cambridge CB2 1TN, England
基金
英国工程与自然科学研究理事会;
关键词
autoregressive process; Bayesian model selection; between-model jumps; posterior conditional approximation; posterior model probability; within-model jumps;
D O I
10.1111/j.1467-9469.2008.00606.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we show how the construction of a trans-dimensional equivalent of the Gibbs sampler can be used to obtain a powerful suite of adaptive algorithms suitable for trans-dimensional MCMC samplers. These algorithms adapt at the local scale, optimizing performance at each iteration in contrast to the globally adaptive scheme proposed by others for the fixeddimensional problem. Our adaptive scheme ensures suitably high acceptance rates for MCMC and RJMCMC proposals without the need for (often prohibitively) time-consuming pilot-tuning exercises. We illustrate our methods using the problem of Bayesian model discrimination for the important class of autoregressive time series models and, through the use of a variety of prior and proposal structures, demonstrate their ability to provide powerful and effective adaptive sampling schemes.
引用
收藏
页码:677 / 690
页数:14
相关论文
共 50 条
  • [41] Wide band channel characterisation in coloured noise using the Reversible Jump MCMC
    Larocque, JR
    Reilly, JP
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 2513 - 2516
  • [42] ESTIMATION OF THE NUMBER OF SOURCES AND THEIR LOCATIONS IN COLORED NOISE USING REVERSIBLE JUMP MCMC
    Asano, Futoshi
    Asoh, Hideki
    Nakandai, Kazuhiro
    [J]. 2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 609 - 613
  • [43] Joint Source Number Detection and DOA Estimation via Reversible Jump MCMC
    Jin Mei-na
    Zhao Yong-jun
    Li Dong-hai
    [J]. PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 825 - 829
  • [44] R package rjmcmc: reversible jump MCMC using post-processing
    Gelling, Nicholas
    Schofield, Matthew R.
    Barker, Richard J.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (02) : 189 - 212
  • [45] Frequency estimation and synchronization of frequency hopping signals based on reversible jump MCMC
    Liang, JL
    Gao, L
    Yang, SY
    [J]. ISPACS 2005: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2005, : 589 - 592
  • [46] Reversible jump MCMC methods for fully automatic motion analysis in tagged MRI
    Smal, Ihor
    Carranza-Herrezuelo, Noemi
    Klein, Stefan
    Wielopolski, Piotr
    Moelker, Adriaan
    Springeling, Tirza
    Bernsen, Monique
    Niessen, Wiro
    Meijering, Erik
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (01) : 301 - 324
  • [47] Synthesizing Open Worlds with Constraints using Locally Annealed Reversible Jump MCMC
    Yeh, Yi-Ting
    Yang, Lingfeng
    Watson, Matthew
    Goodman, Noah D.
    Hanrahan, Pat
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04):
  • [48] Using the Reversible Jump MCMC Procedure for Identifying and Estimating Univariate TAR Models
    Nieto, Fabio H.
    Zhang, Hanwen
    Li, Wen
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (04) : 814 - 840
  • [49] Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models
    Oedekoven, C. S.
    King, R.
    Buckland, S. T.
    Mackenzie, M. L.
    Evans, K. O.
    Burger, L. W., Jr.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 98 : 79 - 90
  • [50] Hierarchical Bayesian Choice of Laplacian ARMA Models Based on Reversible Jump MCMC Computation
    [J]. International Journal of Computational Intelligence Systems, 2020, 13 : 310 - 317