LOGARITHMICALLY IMPROVED CRITERIA FOR EULER AND NAVIER-STOKES EQUATIONS

被引:16
|
作者
Zhou, Yi [1 ]
Lei, Zhen
机构
[1] Fudan Univ, Sch Math Sci LMNS, Shanghai 200433, Peoples R China
关键词
Navier-Stokes equations; Serrin's Criterion; global regularity; REGULARITY;
D O I
10.3934/cpaa.2013.12.2715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the logarithmically improved Serrin's criteria to the three-dimensional incompressible Navier-Stokes equations.
引用
收藏
页码:2715 / 2719
页数:5
相关论文
共 50 条
  • [31] CONVERGENCE OF EULER-STOKES SPLITTING OF THE NAVIER-STOKES EQUATIONS
    BEALE, JT
    GREENGARD, C
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (08) : 1083 - 1115
  • [32] An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations
    Nakao, Kohei
    Taniuchi, Yasushi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 176 : 48 - 55
  • [33] Boundary layer problem: Navier-Stokes equations and Euler equations
    Chemetov, N. V.
    Cipriano, F.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (06) : 2091 - 2104
  • [34] On the Euler plus Prandtl Expansion for the Navier-Stokes Equations
    Kukavica, Igor
    Nguyen, Trinh T.
    Vicol, Vlad
    Wang, Fei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [35] A centrifugal wave solution of the Euler and Navier-Stokes equations
    Shapiro, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (06): : 913 - 923
  • [36] Comparison of stability between Navier-Stokes and Euler equations
    Shi Wen-hui
    Wang Yue-peng
    Shen Chun
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (09) : 1257 - 1263
  • [37] Liouville type theorems for the Euler and the Navier-Stokes equations
    Chae, Dongho
    ADVANCES IN MATHEMATICS, 2011, 228 (05) : 2855 - 2868
  • [38] Relaxed Euler systems and convergence to Navier-Stokes equations
    Peng, Yue-Jun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (02): : 369 - 401
  • [39] The Anisotropic Lagrangian Averaged Euler and Navier-Stokes Equations
    JERROLD E. MARSDEN
    STEVE SHKOLLER
    Archive for Rational Mechanics and Analysis, 2003, 166 : 27 - 46
  • [40] LAYER-AVERAGED EULER AND NAVIER-STOKES EQUATIONS
    Bristeau, M. -O.
    Guichard, C.
    Di Martino, B.
    Sainte-Marie, J.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) : 1221 - 1246