Darboux transformations for quasi-exactly solvable Hamiltonians

被引:6
|
作者
Debergh, N [1 ]
Van den Bossche, B
Samsonov, BF
机构
[1] Univ Liege, Inst Phys B5, B-4000 Cointe Ougree, Belgium
[2] Tomsk VV Kuibyshev State Univ, Dept Quantum Field Theory, Tomsk 634050, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Darboux transformation; QES equations; sextic radial oscillator;
D O I
10.1142/S0217751X02009953
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We construct new quasi-exactly solvable one-dimensional potentials through Darboux transformations. Three directions are investigated: Reducible and two types of irreducible second-order transformations. The irreducible transformations of the first type give singular intermediate potentials and the ones of the second type give complex-valued intermediate potentials while final potentials are meaningful in all cases. These developments are illustrated on the so-called radial sextic oscillator.
引用
收藏
页码:1577 / 1587
页数:11
相关论文
共 50 条
  • [31] Generalization of quasi-exactly solvable and isospectral potentials
    P. K. Bera
    J. Datta
    M. M. Panja
    Tapas Sil
    [J]. Pramana, 2007, 69 : 337 - 367
  • [32] Quasi-exactly solvable models in nonlinear optics
    Alvarez, G
    Finkel, F
    González-López, A
    Rodríguez, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8705 - 8713
  • [33] New Quasi-Exactly Solvable Difference Equation
    Sasaki, Ryu
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 373 - 384
  • [34] Quasi-exactly solvable periodic and random potentials
    Tkachuk, VM
    Voznyak, O
    [J]. PHYSICS LETTERS A, 2002, 301 (3-4) : 177 - 183
  • [35] Quasi-exactly solvable radial dirac equations
    Brihaye, Y
    Kosinski, P
    [J]. MODERN PHYSICS LETTERS A, 1998, 13 (18) : 1445 - 1452
  • [36] Generalization of quasi-exactly solvable and isospectral potentials
    Bera, P. K.
    Datta, J.
    Panja, M. M.
    Sil, Tapas
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 337 - 367
  • [37] New quasi-exactly solvable periodic potentials
    Xie, Qiong-Tao
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [38] Dirac oscillators and quasi-exactly solvable operators
    Brihaye, Y
    Nininahazwe, A
    [J]. MODERN PHYSICS LETTERS A, 2005, 20 (25) : 1875 - 1885
  • [39] Superintegrability and quasi-exactly solvable eigenvalue problems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 925 - 929
  • [40] New Quasi-Exactly Solvable Difference Equation
    Ryu Sasaki
    [J]. Journal of Nonlinear Mathematical Physics, 2008, 15 : 373 - 384