Darboux transformations for quasi-exactly solvable Hamiltonians

被引:6
|
作者
Debergh, N [1 ]
Van den Bossche, B
Samsonov, BF
机构
[1] Univ Liege, Inst Phys B5, B-4000 Cointe Ougree, Belgium
[2] Tomsk VV Kuibyshev State Univ, Dept Quantum Field Theory, Tomsk 634050, Russia
来源
基金
俄罗斯基础研究基金会;
关键词
Darboux transformation; QES equations; sextic radial oscillator;
D O I
10.1142/S0217751X02009953
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We construct new quasi-exactly solvable one-dimensional potentials through Darboux transformations. Three directions are investigated: Reducible and two types of irreducible second-order transformations. The irreducible transformations of the first type give singular intermediate potentials and the ones of the second type give complex-valued intermediate potentials while final potentials are meaningful in all cases. These developments are illustrated on the so-called radial sextic oscillator.
引用
收藏
页码:1577 / 1587
页数:11
相关论文
共 50 条
  • [1] Quasi-exactly solvable quartic Bose Hamiltonians
    Dolya, SN
    Zaslavskii, OB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (30): : 5955 - 5968
  • [2] Quasi-exactly solvable Hamiltonians related to root spaces
    Turbiner, AY
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (Suppl 1) : 660 - 675
  • [3] NEW QUASI-EXACTLY SOLVABLE HAMILTONIANS IN 2 DIMENSIONS
    GONZALEZLOPEZ, A
    KAMRAN, N
    OLVER, PJ
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (03) : 503 - 537
  • [4] Quasi-Exactly Solvable Hamiltonians related to Root Spaces
    Alexander V Turbiner
    [J]. Journal of Nonlinear Mathematical Physics, 2005, 12 : 660 - 675
  • [5] Exactly and quasi-exactly solvable two-mode Bosonic Hamiltonians
    Koç, R
    Tütüncüler, H
    Olgar, E
    [J]. CHINESE JOURNAL OF PHYSICS, 2004, 42 (05) : 575 - 584
  • [6] PT-symmetric, quasi-exactly solvable matrix Hamiltonians
    Brihaye, Yves
    Nininahazwe, Ancilla
    Mandal, Bhabani Prasad
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 13063 - 13073
  • [7] SUPERINTEGRABLE SYSTEMS - POLYNOMIAL ALGEBRAS AND QUASI-EXACTLY SOLVABLE HAMILTONIANS
    LETOURNEAU, P
    VINET, L
    [J]. ANNALS OF PHYSICS, 1995, 243 (01) : 144 - 168
  • [8] Quasi-exactly solvable Hamiltonians: a new approach and an approximation scheme
    Atre, R
    Panigrahi, PK
    [J]. PHYSICS LETTERS A, 2003, 317 (1-2) : 46 - 53
  • [9] Tavis-Cummings models and their quasi-exactly solvable Schrodinger Hamiltonians
    Mohamadian, T.
    Negro, J.
    Nieto, L. M.
    Panahi, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (07):
  • [10] Tavis-Cummings models and their quasi-exactly solvable Schrödinger Hamiltonians
    T. Mohamadian
    J. Negro
    L. M. Nieto
    H. Panahi
    [J]. The European Physical Journal Plus, 134