UPPER BOUNDS FOR THE FUNCTION SOLUTION OF THE HOMOGENEOUS 2D BOLTZMANN EQUATION WITH HARD POTENTIAL

被引:1
|
作者
Bally, Vlad [1 ]
机构
[1] Univ Paris Est, INRIA, LAMA, UMR CNRS,UPEMLV,UPEC, F-77454 Marne La Vallee, France
来源
ANNALS OF APPLIED PROBABILITY | 2019年 / 29卷 / 03期
关键词
Boltzmann equation without cutoff; Hard potentials; interpolation criterion; integration by parts; KAC EQUATION; REGULARITY; EXISTENCE; DENSITIES; ENTROPY; DRIVEN; CUTOFF; SDES;
D O I
10.1214/18-AAP1451
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We deal with f(t)(dv), the solution of the homogeneous 2D Boltzmann equation without cutoff. The initial condition f(0)(dv) may be any probability distribution (except a Dirac mass). However, for sufficiently hard potentials, the semigroup has a regularization property (see Probab. Theory Related Fields 151 (2011) 659-704): f(t)(dv) = f(t)(v) dv for every t > 0. The aim of this paper is to give upper bounds for f(t)(v), the most significant one being of type f(t)(v) <= Ct(-eta)e(-vertical bar v vertical bar lambda) for some eta, lambda > 0.
引用
收藏
页码:1929 / 1961
页数:33
相关论文
共 50 条