This paper investigates statistical properties of the local generalized method of moments (LGMM) estimator for some time series models defined by conditional moment restrictions. First, we consider Markov processes with possible conditional heteroskedasticity of unknown forms and establish the consistency, asymptotic normality, and semi-parametric efficiency of the LGMM estimator. Second, we undertake a higher-order asymptotic expansion and demonstrate that the LGMM estimator possesses some appealing bias reduction properties for positively autocorrelated processes. Our analysis of the asymptotic expansion of the LGMM estimator reveals an interesting contrast with the OLS estimator that helps to shed light on the nature of the bias correction performed by the LGMM estimator. The practical importance of these findings is evaluated in terms of a bond and option pricing exercise based on a diffusion model for spot interest rate. (C) 2012 Elsevier B.V. All rights reserved.
机构:
NE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
Yuan, Xiaohui
Liu, Tianqing
论文数: 0引用数: 0
h-index: 0
机构:
NE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
Liu, Tianqing
Lin, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Math, St Louis, MO 63130 USANE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
Lin, Nan
Zhang, Baoxue
论文数: 0引用数: 0
h-index: 0
机构:
NE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China