Neural network ensembles for posterior probability estimation

被引:0
|
作者
Berardi, VL [1 ]
机构
[1] Bloomsburg Univ Penn, Coll Business, Bloomsburg, PA 17815 USA
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Neural network classification models have been successfully demonstrated in many application areas. The theoretical ability of neural networks to estimate posterior probabilities help to explain these successes. This research investigates the use of neural network ensembles for posterior probability estimation. Neural ensembles combine estimates from several networks to improve model estimation. In addition to the basic ensemble method, advanced models incorporating the resampling techniques of bootstrapping and k-fold cross validation are investigated for simulated problems of realistic complexity and limited training sample sizes.
引用
收藏
页码:1081 / 1083
页数:3
相关论文
共 50 条
  • [21] Evolving artificial neural network ensembles
    Reynolds, Robert G.
    Ali, Mostafa
    Yao, Xin
    Islam, Md. Monirul
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2008, 3 (01) : 31 - 42
  • [22] Obtaining accurate neural network ensembles
    Johansson, Ulf
    Lofstrom, Tuve
    Niklasson, Lars
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 103 - +
  • [23] Neural Network Ensembles in Reinforcement Learning
    Fausser, Stefan
    Schwenker, Friedhelm
    [J]. NEURAL PROCESSING LETTERS, 2015, 41 (01) : 55 - 69
  • [24] Global and local neural network ensembles
    Sierra, A
    Santa Cruz, C
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 651 - 655
  • [25] Diversity and Generalization in Neural Network Ensembles
    Ortega, Luis A.
    Cabanas, Rafael
    Masegosa, Andres R.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [26] Neural Network Ensembles in Reinforcement Learning
    Stefan Faußer
    Friedhelm Schwenker
    [J]. Neural Processing Letters, 2015, 41 : 55 - 69
  • [27] Estimation of posterior probabilities of consumer situational choices with neural network classifiers
    Hu, MY
    Shanker, M
    Hung, MS
    [J]. INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 1999, 16 (04) : 307 - 317
  • [28] Model clustering for neural network ensembles
    Bakker, B
    Heskes, T
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 383 - 388
  • [29] Neural network ensembles for intrusion detection
    Golovko, Vladimir
    Kachurka, Pavel
    Vaitsekhovich, Leanid
    [J]. IDAACS 2007: PROCEEDINGS OF THE 4TH IEEE WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2007, : 578 - 583
  • [30] Lithology recognition by neural network ensembles
    dos Santos, RV
    Artola, F
    da Fontoura, S
    Vellasco, M
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2507 : 302 - 312