A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization

被引:14
|
作者
Birgin, E. G. [1 ]
Martinez, J. M. [2 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci, Inst Math & Stat, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Estadual Campinas, Dept Appl Math, Inst Math Stat & Sci Comp, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Smooth unconstrained minimization; Bunch-Parlett-Kaufman factorizations; Regularization; Newton-type methods;
D O I
10.1007/s10589-019-00089-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A Newton-like method for unconstrained minimization is introduced in the present work. While the computer work per iteration of the best-known implementations may need several factorizations or may use rather expensive matrix decompositions, the proposed method uses a single cheap factorization per iteration. Convergence and complexity and results, even in the case in which the subproblems' Hessians are far from being Hessians of the objective function, are presented. Moreover, when the Hessian is Lipschitz-continuous, the proposed method enjoys O(epsilon-3/2) evaluation complexity for first-order optimality and O(epsilon-3) for second-order optimality as other recently introduced Newton method for unconstrained optimization based on cubic regularization or special trust-region procedures. Fairly successful and fully reproducible numerical experiments are presented and the developed corresponding software is freely available.
引用
收藏
页码:707 / 753
页数:47
相关论文
共 50 条
  • [21] Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization
    Martinez, J. M.
    Raydan, M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (02) : 367 - 385
  • [22] Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization
    J. M. Martínez
    M. Raydan
    Journal of Global Optimization, 2017, 68 : 367 - 385
  • [23] Newton-like method for line outage simulation
    Lo, KL
    Meng, ZJ
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2004, 151 (02) : 225 - 231
  • [24] Semilocal Convergence Theorem for a Newton-like Method
    Lin, Rong-Fei
    Wu, Qing-Biao
    Chen, Min-Hong
    Liu, Lu
    Dai, Ping-Fei
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 482 - 494
  • [25] A Newton-like method for nonlinear system of equations
    María D. González-Lima
    Flor Montes de Oca
    Numerical Algorithms, 2009, 52 : 479 - 506
  • [26] Concerning the Convergence of a Modified Newton-Like Method
    Argyros, Ioannis K.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (03): : 785 - 792
  • [27] A High-Order Newton-Like Method
    WANG Xiuhua1
    2. Department of Mathematics
    3. Microsoft Corporation
    Wuhan University Journal of Natural Sciences, 2011, 16 (01) : 4 - 6
  • [28] ON THE NEWTON-LIKE METHOD FOR THE INCLUSION OF A POLYNOMIAL ZERO
    Petkovic, Ljiljana D.
    Petkovic, Miodrag S.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2007, 1 (01) : 217 - 227
  • [29] A Newton-like method for computing deflating subspaces
    Demyanko, Kirill V.
    Nechepurenko, Yuri M.
    Sadkane, Miloud
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (04) : 289 - 301
  • [30] NEW ALGORITHMS OF DISCRETIZED NEWTON-LIKE METHOD
    PANKIEWICZ, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (09): : 537 - +