Single-Player Monte-Carlo Tree Search

被引:0
|
作者
Schadd, Maarten P. D. [1 ]
Winands, Mark H. M. [1 ]
van den Herik, H. Jaap [1 ]
Chaslot, Guillaume M. J. -B. [1 ]
Uiterwijk, Jos W. H. M. [1 ]
机构
[1] Univ Maastricht, Fac Humanities & Sci, MICC, Games & AI Grp, Maastricht, Netherlands
来源
COMPUTERS AND GAMES | 2008年 / 5131卷
关键词
D O I
10.1007/978-3-540-87608-3_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical methods such as A* and IDA* are a popular and successful choice for one-player games. However, they fail without an accurate admissible evaluation function. In this paper we investigate whether Monte-Carlo Tree Search (MCTS) is an interesting alternative for one-player games where A* and IDA* methods do not perform well. Therefore, we propose a new MCTS variant, called Single-Player Monte-Carlo Tree Search (SP-MCTS). The selection and backpropagation strategy in SP-MCTS are different from standard MCTS. Moreover, SP-MCTS makes use of a straightforward Meta-Search extension. We tested the method on the puzzle SameGame. It turned out that our SP-MCTS program gained the highest score so far on the standardized test set.
引用
收藏
页码:1 / +
页数:3
相关论文
共 50 条
  • [41] Can Monte-Carlo Tree Search learn to sacrifice?
    Nathan Companez
    Aldeida Aleti
    [J]. Journal of Heuristics, 2016, 22 : 783 - 813
  • [42] Can Monte-Carlo Tree Search learn to sacrifice?
    Companez, Nathan
    Aleti, Aldeida
    [J]. JOURNAL OF HEURISTICS, 2016, 22 (06) : 783 - 813
  • [43] Monte-Carlo Tree Search for the Game of Scotland Yard
    Nijssen, J. A. M.
    Winands, Mark H. M.
    [J]. 2011 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2011, : 158 - 165
  • [44] Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search
    Lim, Nengli
    Li, Yueqin
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 209 - 221
  • [45] Parallel Monte-Carlo Tree Search for HPC Systems
    Graf, Tobias
    Lorenz, Ulf
    Platzner, Marco
    Schaefers, Lars
    [J]. EURO-PAR 2011 PARALLEL PROCESSING, PT 2, 2011, 6853 : 365 - 376
  • [46] Monte-Carlo Tree Search for the Maximum Satisfiability Problem
    Goffinet, Jack
    Ramanujan, Raghuram
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 251 - 267
  • [47] Monte-Carlo Tree Search by Best Arm Identification
    Kaufmann, Emilie
    Koolen, Wouter M.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [48] Monte-Carlo Tree Search for Scalable Coalition Formation
    Wu, Feng
    Ramchurn, Sarvapali D.
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 407 - 413
  • [49] EXPERIMENTS WITH MONTE-CARLO TREE SEARCH IN THE GAME OF HAVANNAH
    Lorentz, Richard J.
    [J]. ICGA JOURNAL, 2011, 34 (03) : 140 - 149
  • [50] Monte-Carlo tree search as regularized policy optimization
    Grill, Jean-Bastien
    Altche, Florent
    Tang, Yunhao
    Hubert, Thomas
    Valko, Michal
    Antonoglou, Ioannis
    Munos, Remi
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119