Transversality and Alternating Projections for Nonconvex Sets

被引:57
|
作者
Drusvyatskiy, D. [1 ]
Ioffe, A. D. [2 ]
Lewis, A. S. [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Cornell Univ, ORIE, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Alternating projections; Linear convergence; Variational analysis; Slope; Transversality; CONVERGENCE; REGULARITY; MANIFOLDS; SARD;
D O I
10.1007/s10208-015-9279-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the method of alternating projections for finding a point in the intersection of two closed sets, possibly nonconvex. Assuming only the standard transversality condition (or a weaker version thereof), we prove local linear convergence. When the two sets are semi-algebraic and bounded, but not necessarily transversal, we nonetheless prove subsequence convergence.
引用
收藏
页码:1637 / 1651
页数:15
相关论文
共 50 条
  • [1] Transversality and Alternating Projections for Nonconvex Sets
    D. Drusvyatskiy
    A. D. Ioffe
    A. S. Lewis
    Foundations of Computational Mathematics, 2015, 15 : 1637 - 1651
  • [2] The Method of Alternating Relaxed Projections for Two Nonconvex Sets
    Bauschke H.H.
    Phan H.M.
    Wang X.
    Vietnam Journal of Mathematics, 2014, 42 (4) : 421 - 450
  • [3] Local Linear Convergence for Inexact Alternating Projections on Nonconvex Sets
    Drusvyatskiy, D.
    Lewis, A. S.
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (03) : 669 - 681
  • [4] Local Linear Convergence for Inexact Alternating Projections on Nonconvex Sets
    D. Drusvyatskiy
    A. S. Lewis
    Vietnam Journal of Mathematics, 2019, 47 : 669 - 681
  • [5] Local Linear Convergence for Alternating and Averaged Nonconvex Projections
    Lewis, A. S.
    Luke, D. R.
    Malick, J.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (04) : 485 - 513
  • [6] Local Linear Convergence for Alternating and Averaged Nonconvex Projections
    A. S. Lewis
    D. R. Luke
    J. Malick
    Foundations of Computational Mathematics, 2009, 9 : 485 - 513
  • [7] Convex input and output projections of nonconvex production possibility sets
    Bogetoft, P
    Tama, JM
    Tind, J
    MANAGEMENT SCIENCE, 2000, 46 (06) : 858 - 869
  • [8] Regularity of Collections of Sets and Convergence of Inexact Alternating Projections
    Kruger, Alexander Y.
    Thao, Nguyen H.
    JOURNAL OF CONVEX ANALYSIS, 2016, 23 (03) : 823 - 847
  • [9] GENERIC GEOMETRY, TRANSVERSALITY AND PROJECTIONS
    BRUCE, JW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 183 - 194
  • [10] DEEP METRIC LEARNING WITH ALTERNATING PROJECTIONS ONTO FEASIBLE SETS
    Can, Ogul
    Gurbuz, Yeti Z.
    Alatan, A. Aydin
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1264 - 1268