Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator

被引:7
|
作者
Ngoc Yen Phuong Vo [1 ,2 ]
Thanh Danh Le [2 ]
机构
[1] Ho Chi Minh City Univ Technol & Educ, Fac Mech Engn, Ho Chi Minh City 71307, Vietnam
[2] Ind Univ Ho Chi Minh City, Fac Mech Engn, Ho Chi Minh City 71408, Vietnam
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
关键词
vibration isolator; quasi-zero stiffness; pneumatic cylinder; complex dynamic; sliding friction; PERFORMANCE; DESIGN; MODEL;
D O I
10.3390/app12052378
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper focuses on analyzing the dynamic response of an innovated quasi-zero stiffness pneumatic vibration isolator (QZSPVI) using two mechanisms, including wedge and semicircle cam. Different from other studies relating quasi-zero stiffness isolation system, the pneumatic cylinder in this paper works as an air spring in order to easily adjust the dynamic stiffness of the proposed system according to the change of the isolated load through regulating the pressure. Firstly, the dynamic stiffness of the QZSPVI will be analyzed. Then, the condition for which the minimum dynamic stiffness is quasi-zero around the equilibrium position is also determined. The fundamental resonance response of the QZSPVI subjected to the externally harmonic force is analyzed through multi-scale method and the numerical simulations are verified. Secondly, due to exiting relative sliding frictional phenomenon between the cylinder and piston, instead of an experiment, another key content of this work is to identify the friction force model of the cylinder through virtual prototyping model. From this identified result, the complex dynamic response of the QZSPVI and coexistence of multiple solutions will be discovered by realizing the direct integration of the original dynamic equation through using the 5th-order Runge-Kutta algorithm. The analysis and simulation results clearly show the advantages of the proposed model against the equivalent pneumatic vibration isolator (EPVI), which only employs the wedge mechanism. This research will offer a useful insight into design and QZSPVI in practice.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Analysis of Quasi-Zero Stiffness Vibration Isolator with Fluidic Actuators and Composite Material
    Sivakumar Solaiachari
    Jayakumar Lakshmipathy
    Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2022, 46 : 863 - 873
  • [22] Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness
    Chaoran Liu
    Kaiping Yu
    Nonlinear Dynamics, 2020, 100 : 2141 - 2165
  • [23] Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness
    Liu, Chaoran
    Yu, Kaiping
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2141 - 2165
  • [24] Vibration Isolation Characteristics Analysis of X-shaped Quasi-Zero Stiffness Vibration Isolator
    Yao G.
    Yu Y.-H.
    Zhang Y.-M.
    Wu Z.-H.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2020, 41 (05): : 662 - 666
  • [25] Analysis and Experimental Study on Dynamic Characteristics of an Integrated Quasi-Zero Stiffness Isolator
    Liu, Haiping
    Xiao, Kaili
    Lv, Qi
    Ma, Yunlong
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2022, 144 (02):
  • [26] EXPERIMENTAL STUDY OF LOW FREQUENCY VIBRATION ISOLATOR WITH QUASI-ZERO STIFFNESS
    Anvar, Valeev
    Radmir, Tashbulatov
    Alexey, Zotov
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: FROM ANCIENT TO MODERN ACOUSTICS, 2016,
  • [27] Nonlinear behavior of quasi-zero stiffness nonlinear torsional vibration isolator
    Xu, Jiawei
    Jing, Jianping
    NONLINEAR DYNAMICS, 2024, 112 (04) : 2545 - 2568
  • [28] Quasi-Zero Stiffness Isolator Suitable for Low-Frequency Vibration
    Sui, Guangdong
    Zhang, Xiaofan
    Hou, Shuai
    Shan, Xiaobiao
    Hou, Weijie
    Li, Jianming
    MACHINES, 2023, 11 (05)
  • [29] Limb-inspired bionic quasi-zero stiffness vibration isolator
    Zeng, Rong
    Wen, Guilin
    Zhou, Jiaxi
    Zhao, Gang
    ACTA MECHANICA SINICA, 2021, 37 (07) : 1152 - 1167
  • [30] Nonlinear behavior of quasi-zero stiffness nonlinear torsional vibration isolator
    Jiawei Xu
    Jianping Jing
    Nonlinear Dynamics, 2024, 112 : 2545 - 2568