Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

被引:21
|
作者
Zhang, Jie [1 ]
Guo, Hongzhi [2 ]
Liu, Jiajia [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
来源
MOBILE NETWORKS & APPLICATIONS | 2020年 / 25卷 / 05期
基金
中国国家自然科学基金;
关键词
Vehicular networks; Mobile edge computing; Reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1007/s11036-020-01584-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.
引用
收藏
页码:1736 / 1745
页数:10
相关论文
共 50 条
  • [41] Online Learning Enabled Task Offloading for Vehicular Edge Computing
    Zhang, Rui
    Cheng, Peng
    Chen, Zhuo
    Liu, Sige
    Li, Yonghui
    Vucetic, Branka
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (07) : 928 - 932
  • [42] Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
    Zhang J.
    Qi K.
    Zhang Q.
    Sun L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 29 - 39
  • [43] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [44] Learning Based Energy Efficient Task Offloading for Vehicular Collaborative Edge Computing
    Qin, Peng
    Fu, Yang
    Tang, Guoming
    Zhao, Xiongwen
    Geng, Suiyan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8398 - 8413
  • [45] Joint Service Caching and Computation Offloading Scheme Based on Deep Reinforcement Learning in Vehicular Edge Computing Systems
    Xue, Zheng
    Liu, Chang
    Liao, Canliang
    Han, Guojun
    Sheng, Zhengguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6709 - 6722
  • [46] An Adaptive Data Rate-Based Task Offloading Scheme in Vehicular Networks
    Chen, Chaofan
    Nie, Wendi
    Duan, Yaoxin
    Lee, Victor C. S.
    Liu, Kai
    Li, Huamin
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 877 - 884
  • [47] A Game-Based Computing Resource Allocation Scheme of Edge Server in Vehicular Edge Computing Networks Considering Diverse Task Offloading Modes
    Liu, Xiangyan
    Zheng, Jianhong
    Zhang, Meng
    Li, Yang
    Wang, Rui
    He, Yun
    SENSORS, 2024, 24 (01)
  • [48] Task offloading for vehicular edge computing with imperfect CSI: A deep reinforcement approach
    Wu, Yuxin
    Xia, Junjuan
    Gao, Chongzhi
    Ou, Jiangtao
    Fan, Chengyuan
    Ou, Jianghong
    Fan, Dahua
    PHYSICAL COMMUNICATION, 2022, 55
  • [49] Deep-Reinforcement-Learning-Based Computation Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Yan, Junjie
    Zhao, Xiaohui
    Li, Zan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19882 - 19897
  • [50] Graph-Reinforcement-Learning-Based Task Offloading for Multiaccess Edge Computing
    Sun, Zhenchuan
    Mo, Yijun
    Yu, Chen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04): : 3138 - 3150