Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

被引:21
|
作者
Zhang, Jie [1 ]
Guo, Hongzhi [2 ]
Liu, Jiajia [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
来源
MOBILE NETWORKS & APPLICATIONS | 2020年 / 25卷 / 05期
基金
中国国家自然科学基金;
关键词
Vehicular networks; Mobile edge computing; Reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1007/s11036-020-01584-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.
引用
收藏
页码:1736 / 1745
页数:10
相关论文
共 50 条
  • [1] Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme
    Jie Zhang
    Hongzhi Guo
    Jiajia Liu
    Mobile Networks and Applications, 2020, 25 : 1736 - 1745
  • [2] Trusted Task Offloading in Vehicular Edge Computing Networks: A Reinforcement Learning Based Solution
    Zhang, Lushi
    Guo, Hongzhi
    Zhou, Xiaoyi
    Liu, Jiajia
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6711 - 6716
  • [3] Adaptive Inference Reinforcement Learning for Task Offloading in Vehicular Edge Computing Systems
    Tang, Dian
    Zhang, Xuefei
    Li, Meng
    Tao, Xiaofeng
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [4] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [5] Reinforcement learning based tasks offloading in vehicular edge computing networks
    Cao, Shaohua
    Liu, Di
    Dai, Congcong
    Wang, Chengqi
    Yang, Yansheng
    Zhang, Weishan
    Zheng, Danyang
    COMPUTER NETWORKS, 2023, 234
  • [6] A Task Partitioning and Offloading Scheme in Vehicular Edge Computing Networks
    Qi, Wen
    Xia, Xu
    Wang, Heng
    Xing, Yanxia
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [7] Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems
    Sun, Yuxuan
    Guo, Xueying
    Song, Jinhui
    Zhou, Sheng
    Jiang, Zhiyuan
    Liu, Xin
    Niu, Zhisheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (04) : 3061 - 3074
  • [8] An RSU-crossed dependent task offloading scheme for vehicular edge computing based on deep reinforcement learning
    Bi, Xiang
    Shi, Jianing
    Zhang, Benhong
    Lyu, Zengwei
    Huang, Lingjie
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 41 (04) : 244 - 256
  • [9] An Efficient Distributed Task Offloading Scheme for Vehicular Edge Computing Networks
    Bute, Muhammad Saleh
    Fan, Pingzhi
    Zhang, Li
    Abbas, Fakhar
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (12) : 13149 - 13161
  • [10] Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (01) : 242 - 253