Spontaneous dynamics of asymmetric random recurrent spiking neural networks

被引:33
|
作者
Soula, H [1 ]
Beslon, G
Mazet, O
机构
[1] Natl Inst Appl Sci, PRISMA, Lyon, France
[2] Natl Inst Appl Sci, Camille Jordan Inst, Math Lab, Lyon, France
关键词
D O I
10.1162/089976606774841567
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, we study the effect of a unique initial stimulation on random recurrent networks of leaky integrate-and-fire neurons. Indeed, given a stochastic connectivity, this so-called spontaneous mode exhibits various nontrivial dynamics. This study is based on a mathematical formalism that allows us to examine the variability of the afterward dynamics according to the parameters of the weight distribution. Under the independence hypothesis (e.g., in the case of very large networks), we are able to compute the average number of neurons that fire at a given time-the spiking activity. In accordance with numerical simulations, we prove that this spiking activity reaches a steady state. We characterize this steady state and explore the transients.
引用
收藏
页码:60 / 79
页数:20
相关论文
共 50 条
  • [31] An Unsupervised Learning Algorithm for Deep Recurrent Spiking Neural Networks
    Du, Pangao
    Lin, Xianghong
    Pi, Xiaomei
    Wang, Xiangwen
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 603 - 607
  • [32] Simple framework for constructing functional spiking recurrent neural networks
    Kim, Robert
    Li, Yinghao
    Sejnowski, Terrence J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) : 22811 - 22820
  • [33] Effect of dilution in asymmetric recurrent neural networks
    Folli, Viola
    Gosti, Giorgio
    Leonetti, Marco
    Ruocco, Giancarlo
    NEURAL NETWORKS, 2018, 104 : 50 - 59
  • [34] STATISTICAL DYNAMICS OF LEARNING PROCESSES IN SPIKING NEURAL NETWORKS
    Hyland, David C.
    JER-NAN JUANG ASTRODYNAMICS SYMPOSIUM, 2013, 147 : 363 - 378
  • [35] Macroscopic dynamics of neural networks with heterogeneous spiking thresholds
    Gast, Richard
    Solla, Sara A.
    Kennedy, Ann
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [36] Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
    de Santos-Sierra, Daniel
    Sanchez-Jimenez, Abel
    Garcia-Vellisca, Mariano A.
    Navas, Adrian
    Villacorta-Atienza, Jose A.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9
  • [37] Exploring Temporal Information Dynamics in Spiking Neural Networks
    Kim, Youngeun
    Li, Yuhang
    Park, Hyoungseob
    Venkatesha, Yeshwanth
    Hambitzer, Anna
    Panda, Priyadarshini
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 8308 - 8316
  • [38] Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals
    Georgios Ioannides
    Ioannis Kourouklides
    Alessandro Astolfi
    Scientific Reports, 12
  • [39] Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals
    Ioannides, Georgios
    Kourouklides, Ioannis
    Astolfi, Alessandro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Neural Dynamics Pruning for Energy-Efficient Spiking Neural Networks
    Huang, Haoyu
    He, Linxuan
    Liu, Faqiang
    Zhao, Rong
    Shi, Luping
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024, 2024,