Dirac-vortex topological cavities

被引:116
|
作者
Gao, Xiaomei [1 ,2 ,3 ]
Yang, Lechen [1 ,4 ]
Lin, Hao [1 ,4 ]
Zhang, Lang [1 ,2 ,3 ]
Li, Jiafang [1 ]
Bo, Fang [2 ,3 ]
Wang, Zhong [5 ]
Lu, Ling [1 ,6 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China
[2] Nankai Univ, TEDA Inst Appl Phys, MOE Key Lab Weak Light Nonlinear Photon, Tianjin, Peoples R China
[3] Nankai Univ, Sch Phys, Tianjin, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[5] Tsinghua Univ, Inst Adv Study, Beijing, Peoples R China
[6] Songshan Lake Mat Lab, Dongguan, Peoples R China
基金
北京市自然科学基金; 国家重点研发计划;
关键词
SURFACE-EMITTING LASER; SOLITONS;
D O I
10.1038/s41565-020-0773-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cavity design is crucial for single-mode semiconductor lasers such as the ubiquitous distributed feedback and vertical-cavity surface-emitting lasers. By recognizing that both of these optical resonators feature a single mid-gap mode localized at a topological defect in the one-dimensional lattice, we upgrade this topological cavity design concept into two dimensions using a honeycomb photonic crystal with a vortex Dirac gap by applying the generalized Kekule modulations. We theoretically predict and experimentally show on a silicon-on-insulator platform that the Dirac-vortex cavities have scalable mode areas, arbitrary mode degeneracies, vector-beam vertical emission and compatibility with high-index substrates. Moreover, we demonstrate the unprecedentedly large free spectral range, which defies the universal inverse relation between resonance spacing and resonator size. We believe that our topological micro-resonator will be especially useful in applications where single-mode behaviour is required over a large area, such as the photonic-crystal surface-emitting laser. Surface emission from a topological mid-gap cavity shows large free spectral range and arbitrary mode degeneracy.
引用
收藏
页码:1012 / U41
页数:8
相关论文
共 50 条
  • [41] The Dirac equation as a model of topological insulators
    Yuan, Xiao
    Bowen, M.
    Riseborough, P. S.
    PHILOSOPHICAL MAGAZINE, 2020, 100 (10) : 1324 - 1354
  • [42] Observation of Dirac plasmons in a topological insulator
    Di Pietro, P.
    Ortolani, M.
    Limaj, O.
    Di Gaspare, A.
    Giliberti, V.
    Giorgianni, F.
    Brahlek, M.
    Bansal, N.
    Koirala, N.
    Oh, S.
    Calvani, P.
    Lupi, S.
    NATURE NANOTECHNOLOGY, 2013, 8 (08) : 556 - 560
  • [43] Coupled Dirac Plasmons in Topological Insulators
    Ginley, Theresa P.
    Law, Stephanie
    ADVANCED OPTICAL MATERIALS, 2018, 6 (13):
  • [44] Floquet Engineering Topological Dirac Bands
    Lu, Mingwu
    Reid, G. H.
    Fritsch, A. R.
    Pineiro, A. M.
    Spielman, I. B.
    PHYSICAL REVIEW LETTERS, 2022, 129 (04)
  • [45] Coherent Dirac plasmons in topological insulators
    Mondal, Richarj
    Arai, Akira
    Saito, Yuta
    Fons, Paul
    Kolobov, Alexander V.
    Tominaga, Junji
    Hase, Muneaki
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [46] Dirac Hierarchy in Acoustic Topological Insulators
    Zheng, Li-Yang
    Christensen, Johan
    PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [47] Unification of topological invariants in Dirac models
    von Gersdorff, Gero
    Panahiyan, Shahram
    Chen, Wei
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [48] Topological hinge modes in Dirac semimetals
    Zeng, Xu-Tao
    Chen, Ziyu
    Chen, Cong
    Liu, Bin-Bin
    Sheng, Xian-Lei
    Yang, Shengyuan A.
    FRONTIERS OF PHYSICS, 2023, 18 (01)
  • [49] Dirac oscillator interacting with a topological defect
    Carvalho, J.
    Furtado, C.
    Moraes, F.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [50] Topological superconductivity in Dirac honeycomb systems
    Lee, Kyungmin
    Hazra, Tamaghna
    Randeria, Mohit
    Trivedi, Nandini
    PHYSICAL REVIEW B, 2019, 99 (18)