Numerical valuation of basket credit derivatives in structural jump-diffusion models

被引:1
|
作者
Bujok, Karolina [1 ]
Reisinger, Christoph [1 ,2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Oxford, Oxford Man Inst Quantitat Finance, Oxford OX1 3LB, England
关键词
CALIBRATION;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider a model where each company's asset value follows a jump-diffusion process and is connected with other companies via global factors. Motivated by the 2011 work of Bush, Hambly, Haworth, Jin and Reisinger, where the joint density of asset values is evolved in a large basket approximation, we develop an algorithm for the efficient estimation of collateralized debt obligation (CDO) index and tranche spreads consistent with underlying credit default swaps, using a finite difference simulation of the resulting stochastic partial differential equation. We verify the validity of this approximation numerically by comparison with results obtained by direct Monte Carlo simulation of the basket constituents. A calibration exercise assesses the flexibility of the model and its extensions to match CDO spreads from precrisis and crisis periods.
引用
收藏
页码:115 / 158
页数:44
相关论文
共 50 条
  • [1] Approximate basket options valuation for a jump-diffusion model
    Xu, Guoping
    Zheng, Harry
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (02): : 188 - 194
  • [2] Valuing credit derivatives in a jump-diffusion model
    Hu, Xinhua
    Ye, Zhongxing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 627 - 632
  • [3] A computational approach to hedging Credit Valuation Adjustment in a jump-diffusion setting
    van der Zwaard, Thomas
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
  • [4] Basket options valuation for a local volatility jump-diffusion model with the asymptotic expansion method
    Xu, Guoping
    Zheng, Harry
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2010, 47 (03): : 415 - 422
  • [5] Displaced Jump-Diffusion Option Valuation
    Camara, Antonio
    Krehbiel, Tim
    Li, Weiping
    [J]. JOURNAL OF DERIVATIVES, 2009, 17 (02): : 41 - 58
  • [6] Structural credit risk models with stochastic default barriers and jump clustering using Hawkes jump-diffusion processes
    Pasricha, Puneet
    Selvamuthu, Dharmaraja
    Tardelli, Paola
    [J]. OPSEARCH, 2024,
  • [7] Numerical solution of jump-diffusion LIBOR market models
    Glasserman, P
    Merener, N
    [J]. FINANCE AND STOCHASTICS, 2003, 7 (01) : 1 - 27
  • [8] Numerical solution of jump-diffusion LIBOR market models
    Paul Glasserman
    Nicolas Merener
    [J]. Finance and Stochastics, 2003, 7 : 1 - 27
  • [9] Credit events and the valuation of credit derivatives of basket type
    Kijima M.
    Muromachi Y.
    [J]. Review of Derivatives Research, 2000, 4 (1) : 55 - 79
  • [10] Valuation of forward start options under affine jump-diffusion models
    Vidal Nunes, Joao Pedro
    Viegas Alcaria, Tiago Ramalho
    [J]. QUANTITATIVE FINANCE, 2016, 16 (05) : 727 - 747