Existence Results for Variational Inequalities with Surjectivity Consequences Related to Generalized Monotone Operators

被引:6
|
作者
Kassay, Gabor [1 ]
Miholca, Mihaela [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Equilibrium problem; Variational inequality; Quasicoercive operator; Properly quasimonotone operator; F-hemicontinuity; C-pseudomonotone operator; EQUILIBRIUM PROBLEMS;
D O I
10.1007/s10957-013-0383-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present existence results for variational inequalities given by generalized monotone operators. As a consequence, we deduce the existence of zeros, or even more, the surjectivity of some classes of set-valued operators. We show that by strengthening the continuity assumptions, similar surjectivity results can be obtained without any monotonicity assumption. In the framework of reflexive Banach spaces, we extend a related result due to Inoan and Kolumban (Nonlinear Anal. 68:47-53, 2008).
引用
收藏
页码:721 / 740
页数:20
相关论文
共 50 条
  • [11] Existence theorems of generalized quasi-variational-like inequalities for pseudo-monotone type II operators
    Mohammad SR Chowdhury
    Afrah AN Abdou
    Yeol Je Cho
    [J]. Journal of Inequalities and Applications, 2014
  • [12] EXISTENCE RESULTS FOR GENERALIZED VARIATIONAL-LIKE INEQUALITIES
    Tang, Guo-Ji
    Zhao, Ting
    Huang, Nan-Jing
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (01): : 143 - 154
  • [13] On Surjectivity Results for Maximal Monotone Operators of Type (D)
    Rocco, M.
    Martinez-Legaz, J. E.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2011, 18 (02) : 545 - 576
  • [14] Generalized monotone mixed variational inequalities
    Noor, MA
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (03) : 87 - 93
  • [15] Some existence results for variational inequalities with nonlocal fractional operators
    Oliveira Pimenta, Marcos Tadeu
    Servadei, Raffaella
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [16] On Existence Theorems for Monotone and Nonmonotone Variational Inequalities
    Maugeri, A.
    Raciti, F.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2009, 16 (3-4) : 899 - 911
  • [17] CONVERGENCE OF MAXIMAL MONOTONE OPERATORS AND VARIATIONAL INEQUALITIES
    ATTOUCH, H
    KONISHI, Y
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (09): : 467 - 469
  • [18] Enlargement of Monotone Operators with Applications to Variational Inequalities
    Regina S. Burachik
    Alfredo N. Iusem
    B. F. Svaiter
    [J]. Set-Valued Analysis, 1997, 5 : 159 - 180
  • [19] Enlargement of monotone operators with applications to variational inequalities
    Burachik, RS
    Iusem, AN
    Svaiter, BF
    [J]. SET-VALUED ANALYSIS, 1997, 5 (02): : 159 - 180
  • [20] VARIATIONAL INEQUALITIES FOR MONOTONE OPERATORS .1.
    MINTY, GJ
    [J]. ADVANCES IN MATHEMATICS, 1978, 30 (01) : 1 - 7