First passage times for multidimensional denumerable state Markov processes

被引:4
|
作者
Xu, GH [1 ]
Xu, DJ
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] CAS, Asian Pacific Operat Res Ctr, Beijing 100080, Peoples R China
[3] APORS, Beijing 100080, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1999年 / 44卷 / 11期
关键词
multidimensional denumerable state Markov process; first passage time; uniformization; uniform error;
D O I
10.1007/BF02886012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a general multidimensional denumerable state Markov process with any initial state probability vector, the probability density function and its LS transform of the first passage time to a certain given state set are obtained and the algorithms for them are derived. It is proved that the resulting errors of the algorithms are both uniform in their respective arguments. Some numerical results are presented.
引用
收藏
页码:970 / 980
页数:11
相关论文
共 50 条
  • [1] First passage times for multidimensional denumerable state Markov processes
    XU Guanghui(HSU Guang-Hui) and XU DejuInstitute of Applied Mathematics
    Asian-Pacific Operations Research Center within CAS and APORS
    Science Bulletin, 1999, (11) : 970 - 980
  • [3] Transient solutions for multidimensional denumerable state Markov processes
    Hsu, GH
    Xu, DJ
    QUEUEING SYSTEMS, 1996, 23 (1-4) : 317 - 329
  • [4] Transient solutions for multidimensional denumerable state Markov processes
    Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China
    Queueing Syst., 1-4 (317-329):
  • [5] MARKOV DECISION PROGRAMMING-THE FIRST PASSAGE MODEL WITH DENUMERABLE STATE SPACE
    LIU Jianyong LIU Ke (Institute of Applied Mathematics
    Journal of Systems Science & Complexity, 1992, (04) : 340 - 351
  • [6] First passage times for Markov renewal processes and applications
    徐光煇
    袁学明
    李泉林
    Science China Mathematics, 2000, (12) : 1238 - 1249
  • [7] First passage times for Markov renewal processes and applications
    Xu, Guanghui
    Yuan, Xueming
    Li, Quanlin
    2000, Science in China Press (43):
  • [8] First passage times for Markov renewal processes and applications
    Guanghui Xu
    Xueming Yuan
    Quanlin Li
    Science in China Series A: Mathematics, 2000, 43 : 1238 - 1249
  • [9] On first-passage times in increasing Markov processes
    PerezOcon, R
    GamizPerez, ML
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 199 - 203
  • [10] First passage times for Markov renewal processes and applications
    Xu, GH
    Yuan, XM
    Li, QL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (12): : 1238 - 1249