Diagnostics subspace identification method of linear state-space model with observation outliers

被引:2
|
作者
AlMutawa, Jaafar [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
state-space methods; linear systems; Monte Carlo methods; parameter estimation; time series; diagnostics subspace identification method; linear state-space model; observation outliers; Monte Carlo simulation; vibrating structure model; dynamical state; SYSTEM-IDENTIFICATION; REGRESSION MODEL; OUT DIAGNOSTICS; ROBUST; ALGORITHMS;
D O I
10.1049/iet-spr.2014.0469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors propose a diagnostic technique for the state-space model fitting of time series by deleting some observations and measuring the change in the parameter estimates. They consider this approach in order to distinguish an observational outlier from an innovational one. Thus, they present a robust subspace identification algorithm that is less sensitive to outliers. A Monte Carlo simulation for a vibrating structure model demonstrates the effectiveness of the proposed algorithm and its ability to detect outliers in the measurements as well as the dynamical state.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [1] A SUBSPACE FITTING METHOD FOR IDENTIFICATION OF LINEAR STATE-SPACE MODELS
    SWINDLEHURST, A
    ROY, R
    OTTERSTEN, B
    KAILATH, T
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (02) : 311 - 316
  • [2] A linear regression approach to state-space subspace system identification
    Jansson, M
    Wahlberg, B
    [J]. SIGNAL PROCESSING, 1996, 52 (02) : 103 - 129
  • [3] Stochastic subspace identification of linear systems with observation outliers
    Almutawa, Jaafar
    [J]. 2013 21ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2013, : 590 - 596
  • [4] Stochastic subspace identification of linear systems with observation outliers
    Tanaka, Hideyuki
    ALMutawa, Jaafar
    Katayama, Tohru
    [J]. 2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 7090 - 7095
  • [5] Recursive subspace identification of linear and non-linear Wiener state-space models
    Lovera, M
    Gustafsson, T
    Verhaegen, M
    [J]. AUTOMATICA, 2000, 36 (11) : 1639 - 1650
  • [6] Constrained Subspace Method for the Identification of Structured State-Space Models (COSMOS)
    Yu, Chengpu
    Ljung, Lennart
    Wills, Adrian
    Verhaegen, Michel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4201 - 4214
  • [7] An Improved Consistent Subspace Identification Method Using Parity Space for State-space Models
    Jie Hou
    Fengwei Chen
    Penghua Li
    Zhiqin Zhu
    Fei Liu
    [J]. International Journal of Control, Automation and Systems, 2019, 17 : 1167 - 1176
  • [8] An Improved Consistent Subspace Identification Method Using Parity Space for State-space Models
    Hou, Jie
    Chen, Fengwei
    Li, Penghua
    Zhu, Zhiqin
    Liu, Fei
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (05) : 1167 - 1176
  • [9] A Diagnostic Procedure for Detecting Outliers in Linear State-Space Models
    You, Dongjun
    Hunter, Michael
    Chen, Meng
    Chow, Sy-Miin
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 55 (02) : 231 - 255
  • [10] Subspace-based state-space system identification
    Mats Viberg
    [J]. Circuits, Systems and Signal Processing, 2002, 21 : 23 - 37