An Improved Consistent Subspace Identification Method Using Parity Space for State-space Models

被引:12
|
作者
Hou, Jie [1 ]
Chen, Fengwei [2 ]
Li, Penghua [1 ]
Zhu, Zhiqin [1 ]
Liu, Fei [3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, 2 Chongwen Rd, Chongqing, Peoples R China
[2] Wuhan Univ, Dept Automat, 299 Bayi Rd, Wuhan, Hubei, Peoples R China
[3] Chongqing Dexin Robot Testing Ctr Co Ltd, Natl Robot Test & Assessment Ctr Chongqing, 101 Yunhan Rd, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Consistency; instrumental variables; parity space; rank condition; subspace identification; DATA-DRIVEN DESIGN; FAULT-DETECTION; SYSTEMS;
D O I
10.1007/s12555-018-0499-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an alternative consistent subspace identification method using parity space is proposed. The future/past input data and the past output data are used to construct the instrument variable to eliminate the noise effect on consistent estimation. The extended observability matrix and the triangular block-Toeplitz matrix are then retrieved from a parity space of the noise-free matrix using a singular value decomposition based method. The system matrices are finally estimated from the above estimated matrices. The consistency of the proposed method for estimation of the extended observability matrix and the triangular block-Toeplitz matrix is established. Compared with the classical SIMs using parity space like SIMPCA and SIMPCA-Wc, the proposed method generally enhances the estimated model efficiency/accuracy thanks to the use of future input data. Two examples are presented to illustrate the effectiveness and merit of the proposed method.
引用
收藏
页码:1167 / 1176
页数:10
相关论文
共 50 条
  • [1] An Improved Consistent Subspace Identification Method Using Parity Space for State-space Models
    Jie Hou
    Fengwei Chen
    Penghua Li
    Zhiqin Zhu
    Fei Liu
    [J]. International Journal of Control, Automation and Systems, 2019, 17 : 1167 - 1176
  • [2] A SUBSPACE FITTING METHOD FOR IDENTIFICATION OF LINEAR STATE-SPACE MODELS
    SWINDLEHURST, A
    ROY, R
    OTTERSTEN, B
    KAILATH, T
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (02) : 311 - 316
  • [3] Constrained Subspace Method for the Identification of Structured State-Space Models (COSMOS)
    Yu, Chengpu
    Ljung, Lennart
    Wills, Adrian
    Verhaegen, Michel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4201 - 4214
  • [4] Nuclear Norm Subspace Identification Of Continuous Time State-Space Models
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    [J]. IFAC PAPERSONLINE, 2018, 51 (01): : 530 - 535
  • [5] IDENTIFICATION OF LINEAR PLANTS USING STATE-SPACE MODELS
    MACIAG, C
    COOK, G
    [J]. IECON 89, VOLS 1-4: POWER ELECTRONICS - SIGNAL-PROCESSING & SIGNAL CONTROL - FACTORY AUTOMATION, EMERGING TECHNOLOGIES, 1989, : 469 - 473
  • [6] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    [J]. NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [7] Subspace-based state-space system identification
    Mats Viberg
    [J]. Circuits, Systems and Signal Processing, 2002, 21 : 23 - 37
  • [8] State-Space Models for Control and Identification
    [J]. 2005, Springer Verlag (308):
  • [9] Subspace-based state-space system identification
    Viberg, M
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (01) : 23 - 37
  • [10] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    [J]. AUTOMATICA, 2018, 90 : 54 - 61