Learning Molecular Representations for Medicinal Chemistry Miniperspective

被引:128
|
作者
Chuang, Kangway, V [1 ]
Gunsalus, Laura M. [1 ]
Keiser, Michael J. [1 ]
机构
[1] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, Dept Bioengn & Therapeut Sci,Bakar Computat Hlth, Inst Neurodegenerat Dis,Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
DEEP NEURAL-NETWORKS; DRUG DISCOVERY; ORGANIC-CHEMISTRY; MACHINE; QSAR; DESIGN; CLASSIFICATION; PREDICTION; SMILES; DESCRIPTORS;
D O I
10.1021/acs.jmedchem.0c00385
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The accurate modeling and prediction of small molecule properties and bioactivities depend on the critical choice of molecular representation. Decades of informatics-driven research have relied on expert-designed molecular descriptors to establish quantitative structure-activity and structure-property relationships for drug discovery. Now, advances in deep learning make it possible to efficiently and compactly learn molecular representations directly from data. In this review, we discuss how active research in molecular deep learning can address limitations of current descriptors and fingerprints while creating new opportunities in cheminformatics and virtual screening. We provide a concise overview of the role of representations in cheminformatics, key concepts in deep learning, and argue that learning representations provides a way forward to improve the predictive modeling of small molecule bioactivities and properties.
引用
收藏
页码:8705 / 8722
页数:18
相关论文
共 50 条
  • [41] Geometric deep learning on molecular representations
    Kenneth Atz
    Francesca Grisoni
    Gisbert Schneider
    Nature Machine Intelligence, 2021, 3 : 1023 - 1032
  • [43] Combining machine learning and quantum mechanics yields more chemically aware molecular descriptors for medicinal chemistry applications
    Tortorella, Sara
    Carosati, Emanuele
    Sorbi, Giulia
    Bocci, Giovanni
    Cross, Simon
    Cruciani, Gabriele
    Storchi, Loriano
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (29) : 2068 - 2078
  • [44] Molecular Conceptor™ for training in medicinal chemistry, drug design, and cheminformatics
    Cohen, Claude
    Fischel, Ouri
    Cohen, Elie
    CHEMICAL BIOLOGY & DRUG DESIGN, 2007, 69 (01) : 75 - 82
  • [45] Consensus Analyses in Molecular Docking Studies Applied to Medicinal Chemistry
    Maia, Mayara dos Santos
    Soares Rodrigues, Gabriela Cristina
    Silva Cavalcanti, Andreza Barbosa
    Scotti, Luciana
    Scotti, Marcus Tullius
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2020, 20 (14) : 1322 - 1340
  • [46] Molecular modeling: A tool for rational drug design in medicinal chemistry
    Barreiro, EJ
    Rodrigues, CR
    Albuquerque, MG
    deSantAnna, CMR
    deAlencastro, RB
    QUIMICA NOVA, 1997, 20 (03): : 300 - 310
  • [47] MCDCalc: Markov Chain Molecular Descriptors Calculator for Medicinal Chemistry
    Carracedo-Reboredo, Paula
    Corona, Ramiro
    Martinez-Nunes, Mikel
    Fernandez-Lozano, Carlos
    Tsiliki, Georgia
    Sarimveis, Haralambos
    Aranzamendi, Eider
    Arrasate, Sonia
    Sotomayor, Nuria
    Lete, Esther
    Robert Munteanu, Cristian
    Gonzalez-Diaz, Humbert
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2020, 20 (04) : 305 - 317
  • [48] Advances in Computational Medicinal Chemistry: Matched Molecular Pair Analysis
    Wassermann, Anne Mai
    Dimova, Dilyana
    Iyer, Preeti
    Bajorath, Juergen
    DRUG DEVELOPMENT RESEARCH, 2012, 73 (08) : 518 - 527
  • [49] IS THERE ANYTHING NEW ABOUT THE MOLECULAR RECOGNITION APPLIED TO MEDICINAL CHEMISTRY?
    Fokoue, Harold H.
    Pinheiro, Pedro S. M.
    Fraga, Carlos A. M.
    Sant'Anna, Carlos M. R.
    QUIMICA NOVA, 2020, 43 (01): : 78 - 89
  • [50] MOLECULAR MODELING SOFTWARE AND METHODS FOR MEDICINAL CHEMISTRY .2.
    COHEN, NC
    BLANEY, JM
    HUMBLET, C
    GUND, P
    BARRY, DC
    JOURNAL OF MEDICINAL CHEMISTRY, 1990, 33 (03) : 883 - 894