Non-commutative Geometry and Applications to Physical Systems

被引:0
|
作者
Zaim, Slimane [1 ]
机构
[1] Univ Hadj Lakhdar, Fac Sci, Dept Sci Mtiere, Batna, Algeria
来源
COMPUTATIONAL ANALYSIS, AMAT 2015 | 2016年 / 155卷
关键词
ANALYTIC CONTINUED FRACTIONS; 2-DIMENSIONAL HYDROGEN-ATOM; SCHRODINGER WAVE-EQUATION; QUANTUM-MECHANICS; BOUND-STATES; POTENTIAL V(R)=AR(2)+BR(-4)+CR(-6); SINGULAR POTENTIALS; ANHARMONICITIES; DIMENSIONS; SCATTERING;
D O I
10.1007/978-3-319-28443-9_22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain exact solutions of the 2D Schrodinger equation with the central potentials V(r) = ar(2) + br(-2) + cr(-4) and V(r) = ar(-1) + br(-2) in a non-commutative space up to the first order of noncommutativity parameter using the power-series expansion method similar to the 2D Schrodinger equation with the singular even-power and inverse-power potentials, respectively, in commutative space. We derive the exact non-commutative energy levels and show that the energy is shifted to m levels, as in the Zeeman effect.
引用
收藏
页码:313 / 323
页数:11
相关论文
共 50 条
  • [41] Non-commutative geometry and matrix quantum mechanics
    Farmany, Abbas
    Lotfikar, Roshanak
    Abbasi, Shahryar
    Naghipour, Ali
    Farmany, Amin
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 62 - 64
  • [42] ON NON-COMMUTATIVE ALGEBRA, AND THE FOUNDATIONS OF PROJECTIVE GEOMETRY
    BAKER, HF
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 205 (1081): : 178 - 191
  • [43] N=2 superalgebra and non-commutative geometry
    Grosse, H
    Klimcik, C
    Presnajder, P
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 603 - 612
  • [44] Gauge Theories and non-Commutative Geometry A review
    Iliopoulos, John
    6TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS (ICNFP 2017), 2018, 182
  • [45] Non-commutative geometry and symplectic field theory
    Amorim, R. G. G.
    Fernandes, M. C. B.
    Khanna, F. C.
    Santana, A. E.
    Vianna, J. D. M.
    PHYSICS LETTERS A, 2007, 361 (06) : 464 - 471
  • [46] Non-commutative geometry, multiscalars, and the symbol map
    Reuter, M
    NUCLEAR PHYSICS B, 1996, : 333 - 337
  • [47] D-branes and non-commutative geometry
    Pawelczyk, J
    ACTA PHYSICA POLONICA B, 2002, 33 (09): : 2489 - 2500
  • [48] Supersymmetric Quantum Theory and Non-Commutative Geometry
    J. Fröhlich
    O. Grandjean
    A. Recknagel
    Communications in Mathematical Physics, 1999, 203 : 119 - 184
  • [49] D-branes and non-commutative geometry
    Acta Physica Polonica, Series B., 2002, 33 (09): : 2489 - 2500
  • [50] Quantum (non-commutative) toric geometry: Foundations
    Katzarkov, Ludmil
    Lupercio, Ernesto
    Meersseman, Laurent
    Verjovsky, Alberto
    ADVANCES IN MATHEMATICS, 2021, 391