Controllability of Sobolev type stochastic differential equations driven by fBm with non-instantaneous impulses

被引:0
|
作者
Madhuri, S. [1 ]
Deekshitulu, G. V. S. R. [1 ]
机构
[1] JNTUK, Dept Math, UCEK, Kakinada, AP, India
关键词
Controllability; fractional Brownian motion; fixed point theorem; non-instantaneous impulses; Sobolev type stochastic differential equations; APPROXIMATE CONTROLLABILITY; INTEGRODIFFERENTIAL EQUATIONS; EVOLUTION-EQUATIONS; INCLUSIONS; STABILITY; EXISTENCE;
D O I
10.22075/ijnaa.2022.20542.2164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the controllability results for a class of multi-valued Sobolev type neutral stochastic differ-ential equations that are steered by fractional Brownian motion B-t(H) with non-instantaneous impulses for H is an element of (1/2, 1) by assuming the controllability of the linear system. The results are obtained by utilizing the fixed-point theorem for multi-valued operators and stochastic analysis. At last, an example is given to represent the results of the theorem.
引用
收藏
页码:923 / 938
页数:16
相关论文
共 50 条
  • [21] Controllability criteria of fractional differential dynamical systems with non-instantaneous impulses
    Vadivoo, B. Sundara
    Raja, R.
    Cao, Jinde
    Rajchakit, G.
    Seadawy, Aly R.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (03) : 777 - 793
  • [22] Optimality of Non-instantaneous Impulsive Fractional Stochastic Differential Inclusion with fBm
    P. Balasubramaniam
    T. Sathiyaraj
    K. Ratnavelu
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 2787 - 2819
  • [23] Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses
    Muslim Malik
    Rajesh Dhayal
    Syed Abbas
    Avadhesh Kumar
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 103 - 118
  • [24] Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses
    Malik, Muslim
    Dhayal, Rajesh
    Abbas, Syed
    Kumar, Avadhesh
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) : 103 - 118
  • [25] Lipschitz Stability of Differential Equations With Supremum And Non-instantaneous Impulses
    Hristova, S.
    Dobreva, A.
    Ivanova, K.
    SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020), 2021, 2321
  • [26] A remark on ψ-Hilfer fractional differential equations with non-instantaneous impulses
    Van Hoa Ngo
    O'Regan, Donal
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3354 - 3368
  • [27] On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses
    Yang, Dan
    Wang, JinRong
    O'Regan, Donal
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 150 - 171
  • [28] Global Solutions for Abstract Differential Equations with Non-Instantaneous Impulses
    Michelle Pierri
    Hernán R. Henríquez
    Andréa Prokopczyk
    Mediterranean Journal of Mathematics, 2016, 13 : 1685 - 1708
  • [29] RAZUMIKHIN METHOD TO DELAY DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2019, 11 (01): : 143 - 165
  • [30] LIPSCHITZ STABILITY OF DELAY DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES
    Hristova, S.
    Ivanova, K.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (01): : 167 - 181