Assimilation of SMOS Sea Surface Salinity in the Regional Ocean Model for South China Sea

被引:12
|
作者
Mu, Ziyao [1 ]
Zhang, Weimin [1 ,2 ]
Wang, Pinqiang [1 ]
Wang, Huizan [1 ]
Yang, Xiaofeng [3 ,4 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha 410073, Hunan, Peoples R China
[2] Key Lab Software Engn Complex Syst, Changsha 410073, Hunan, Peoples R China
[3] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[4] Hainan Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China
来源
REMOTE SENSING | 2019年 / 11卷 / 08期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
SMOS; SSS preprocessing; Generalized Regression Neural Network (GRNN); data assimilation; subsurface salinity; SYSTEM ROMS; PART II; TEMPERATURE; VARIABILITY; AQUARIUS; IMPACT; PERFORMANCE; REANALYSIS;
D O I
10.3390/rs11080919
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ocean salinity has an important impact on marine environment simulations. The Soil Moisture and Ocean Salinity (SMOS) mission is the first satellite in the world to provide large-scale global salinity observations of the oceans. Salinity remote sensing observations in the open ocean have been successfully applied in data assimilations, while SMOS salinity observations contain large errors in the coastal ocean (including the South China Sea (SCS)) and high latitudes and cannot be effectively applied in ocean data assimilations. In this paper, the SMOS salinity observation data are corrected with the Generalized Regression Neural Network (GRNN) in data assimilation preprocessing, which shows that after correction, the bias and root mean square error (RMSE) of the SMOS sea surface salinity (SSS) compared with the Argo observations can be reduced from 0.155 PSU and 0.415 PSU to -0.003 PSU and 0.112 PSU, respectively, in the South China Sea. The effect is equally significant in the northwestern Pacific region. The preprocessed salinity data were applied to an assimilation in a coastal region for the first time. The six groups of assimilation experiments set in the South China Sea showed that the assimilation of corrected SMOS SSS can effectively improve the upper ocean salinity simulation.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Sea Surface Salinity mapping with SMOS space mission
    Font, J
    Lagerloef, G
    Kerr, Y
    Skou, N
    Berger, M
    [J]. BUILDING THE EUROPEAN CAPACITY IN OPERATIONAL OCEANOGRAPHY, PROCEEDINGS, 2003, 69 : 186 - 189
  • [22] EVALUATION OF SEA SURFACE SALINITY OBSERVED BY AQUARIUS AND SMOS
    Ebuchi, Naoto
    Abe, Hiroto
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 656 - 659
  • [23] Overview of the SMOS sea surface salinity prototype processor
    Zine, Sonia
    Boutin, Jacqueline
    Font, Jordi
    Reul, Nicolas
    Waldteufel, Philippe
    Gabarro, Carolina
    Tenerelli, Joseph
    Petitcolin, Francois
    Vergely, Jean-Luc
    Talone, Marco
    Delwart, Steven
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03): : 621 - 645
  • [24] Mitigation of systematic errors in SMOS sea surface salinity
    Kolodziejczyk, Nicolas
    Boutin, Jacqueline
    Vergely, Jean-Luc
    Marchand, Stephane
    Martin, Nicolas
    Reverdin, Gilles
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 180 : 164 - 177
  • [25] Subtropical sea surface salinity maxima in the South Indian Ocean
    WANG Yu
    LI Yuanlong
    WEI Chuanjie
    [J]. Journal of Oceanology and Limnology, 2020, 38 (01) : 16 - 29
  • [26] Subtropical sea surface salinity maxima in the South Indian Ocean
    Wang, Yu
    Li, Yuanlong
    Wei, Chuanjie
    [J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2020, 38 (01) : 16 - 29
  • [27] Subtropical sea surface salinity maxima in the South Indian Ocean
    Yu Wang
    Yuanlong Li
    Chuanjie Wei
    [J]. Journal of Oceanology and Limnology, 2020, 38 : 16 - 29
  • [28] Performance of four sea surface temperature assimilation schemes in the South China Sea
    Shu, Yeqiang
    Zhu, Jiang
    Wang, Dongxiao
    Yan, Changxiang
    Xiao, Xianjun
    [J]. CONTINENTAL SHELF RESEARCH, 2009, 29 (11-12) : 1489 - 1501
  • [29] First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
    Gonzalez-Gambau, Veronica
    Olmedo, Estrella
    Turiel, Antonio
    Gonzalez-Haro, Cristina
    Garcia-Espriu, Aina
    Martinez, Justino
    Alenius, Pekka
    Tuomi, Laura
    Catany, Rafael
    Arias, Manuel
    Gabarro, Carolina
    Hoareau, Nina
    Umbert, Marta
    Sabia, Roberto
    Fernandez, Diego
    [J]. EARTH SYSTEM SCIENCE DATA, 2022, 14 (05) : 2343 - 2368
  • [30] Eddy-induced sea surface salinity changes in the South China Sea
    Yang, Yikai
    Guo, Yiming
    Zeng, Lili
    Wang, Qiang
    [J]. FRONTIERS IN MARINE SCIENCE, 2023, 10