Harmonic Spaces and Density Functions

被引:3
|
作者
Gilkey, P. B. [1 ]
Park, J. H. [2 ]
机构
[1] Univ Oregon, Math Dept, Eugene, OR 97403 USA
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Rank one symmetric spaces; harmonic spaces; density function; MANIFOLDS; CONJECTURE; VOLUME;
D O I
10.1007/s00025-020-01248-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the density function of a harmonic space to obtain estimates for the eigenvalues of the Jacobi operator; when these estimates are sharp, then the harmonic space is a symmetric Osserman space.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] ON WEIGHTED SPACES OF HARMONIC AND HOLOMORPHIC-FUNCTIONS
    LUSKY, W
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 309 - 320
  • [42] Wavelet characterization of growth spaces of harmonic functions
    Kjersti Solberg Eikrem
    Eugenia Malinnikova
    Pavel A. Mozolyako
    [J]. Journal d'Analyse Mathématique, 2014, 122 : 87 - 111
  • [43] STABLE POINTS AND SPACES OF HARMONIC-FUNCTIONS
    THISI, HV
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (20): : 1339 - 1341
  • [44] Hardy spaces for α-harmonic functions in regular domains
    Krzysztof Michalik
    Michal Ryznar
    [J]. Mathematische Zeitschrift, 2010, 265 : 173 - 186
  • [45] Some Remarks on Harmonic Functions in Minkowski Spaces
    Yin, Songting
    [J]. MATHEMATICS, 2019, 7 (02)
  • [46] Integral representations of harmonic functions in half spaces
    Guantie, Deng
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (01): : 53 - 59
  • [47] Deriving harmonic functions in higher dimensional spaces
    Qian, T
    Sommen, F
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (02): : 275 - 288
  • [48] Harmonic functions on topological groups and symmetric spaces
    Cho-Ho Chu
    Anthony To-Ming Lau
    [J]. Mathematische Zeitschrift, 2011, 268 : 649 - 673
  • [49] BOURGAIN ALGEBRAS OF SPACES OF HARMONIC-FUNCTIONS
    IZUCHI, K
    STROETHOFF, K
    YALE, K
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1994, 41 (02) : 309 - 321
  • [50] A criterion for approximability by harmonic functions in Lipschitz spaces
    Mazalov M.Y.
    [J]. Journal of Mathematical Sciences, 2013, 194 (6) : 678 - 692