Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?

被引:14
|
作者
Chaudhry, Farhan [1 ,2 ,3 ]
Hunt, Rachel J. [3 ]
Hariharan, Prashant [4 ]
Anand, Sharath Kumar [1 ,2 ]
Sanjay, Surya [1 ,2 ]
Kjoller, Ellen E. [1 ,2 ]
Bartlett, Connor M. [1 ,2 ]
Johnson, Kipp W. [5 ]
Levy, Phillip D. [1 ,2 ]
Noushmehr, Houtan [3 ]
Lee, Ian Y. [3 ]
机构
[1] Wayne State Univ, Dept Emergency Med, Detroit, MI 48202 USA
[2] Wayne State Univ, Integrat Biosci Ctr, Detroit, MI 48202 USA
[3] Henry Ford Hosp, Dept Neurosurg, Detroit, MI 48202 USA
[4] Wayne State Univ, Dept Biomed Engn, Detroit, MI USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
来源
FRONTIERS IN NEUROLOGY | 2020年 / 11卷
关键词
neurocritical care; machine learning; artificial intelligence; neurology; intensive and critical care; PREDICTION; MODELS; NETWORKS;
D O I
10.3389/fneur.2020.554633
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The neurological ICU (neuro ICU) often suffers from significant limitations due to scarce resource availability for their neurocritical care patients. Neuro ICU patients require frequent neurological evaluations, continuous monitoring of various physiological parameters, frequent imaging, and routine lab testing. This amasses large amounts of data specific to each patient. Neuro ICU teams are often overburdened by the resulting complexity of data for each patient. Machine Learning algorithms (ML), are uniquely capable of interpreting high-dimensional datasets that are too difficult for humans to comprehend. Therefore, the application of ML in the neuro ICU could alleviate the burden of analyzing big datasets for each patient. This review serves to (1) briefly summarize ML and compare the different types of MLs, (2) review recent ML applications to improve neuro ICU management and (3) describe the future implications of ML to neuro ICU management.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Mini-Review of Machine Learning in Big Data Analytics:Applications,Challenges,and Prospects
    Isaac Kofi Nti
    Juanita Ahia Quarcoo
    Justice Aning
    Godfred Kusi Fosu
    Big Data Mining and Analytics, 2022, 5 (02) : 81 - 97
  • [42] A Review on Machine Learning, Big Data Analytics, and Design for Additive Manufacturing for Aerospace Applications
    Satish Chinchanikar
    Avez A. Shaikh
    Journal of Materials Engineering and Performance, 2022, 31 : 6112 - 6130
  • [43] Machine learning on big data for future computing
    Jeong, Young-Sik
    Hassan, Houcine
    Sangaiah, Arun Kumar
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (06): : 2925 - 2929
  • [44] Machine learning on big data for future computing
    Young-Sik Jeong
    Houcine Hassan
    Arun Kumar Sangaiah
    The Journal of Supercomputing, 2019, 75 : 2925 - 2929
  • [45] Machine Learning With Big Data: Challenges and Approaches
    L'Heureux, Alexandra
    Grolinger, Katarina
    Elyamany, Hany F.
    Capretz, Miriam A. M.
    IEEE ACCESS, 2017, 5 : 7776 - 7797
  • [46] Machine Learning Meets Big Spatial Data
    Sabek, Ibrahim
    Mokbel, Mohamed F.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (12): : 1982 - 1985
  • [47] Machine Learning Challenges in Big Data Era
    Veganzones-Bodon, Miguel
    DYNA, 2019, 94 (05): : 478 - 479
  • [48] Machine Learning for Astronomical Big Data Processing
    Xu, Long
    Yan, Yihua
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [49] Machine learning in 'big data': handle with care
    Loring, Zak
    Mehrotra, Suchit
    Piccini, Jonathan P.
    EUROPACE, 2019, 21 (09): : 1284 - 1285
  • [50] Machine Learning and Computational Intelligence in Big Data
    Anagnostopoulos, Christos
    Kolomvatsos, Kostas
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (06) : 873 - 874