Separability criterion and inseparable mixed states with positive partial transposition

被引:1069
|
作者
Horodecki, P
机构
[1] Fac. of Appl. Phys. and Mathematics, Tech. University of Gdańsk
关键词
D O I
10.1016/S0375-9601(97)00416-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that any separable state on the Hilbert space H = H-1 x H-2 can be written as a convex combination of N pure product states with N less than or equal to (dim H)(2). Then a new separability criterion for mixed states in terms of the range of the density matrix is obtained. It is used in the construction of inseparable mixed states with positive partial transposition in the case of 3 x 3 and 2 x 4 systems, The states represent an entanglement which is hidden in a more subtle way than known so far. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [31] Separability of mixed states: necessary and sufficient conditions
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (01):
  • [32] Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems
    Huang Jie-Hui
    Hu Li-Yun
    Wang Lei
    Zhu Shi-Yao
    CHINESE PHYSICS LETTERS, 2014, 31 (04)
  • [33] Entanglement in probability representation of quantum states and tomographic criterion of separability
    Man'ko, VI
    Marmo, G
    Sudarshan, ECG
    Zaccaria, F
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (02) : 172 - 177
  • [34] Partial separability and entanglement criteria for multiqubit quantum states
    Seevinck, Michael
    Uffink, Jos
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [35] Indecomposable positive maps and a new family of inseparable PPT states
    Simon, Sudhavathani
    Rajagopalan, S. P.
    Simon, R.
    QUANTUM COMPUTING: BACK ACTION 2006, 2006, 864 : 67 - 80
  • [36] Bipartite entanglement in systems of identical particles: The partial transposition criterion
    Benatti, F.
    Floreanini, R.
    Marzolino, U.
    ANNALS OF PHYSICS, 2012, 327 (05) : 1304 - 1319
  • [37] Separability for mixed states with operator Schmidt rank two
    De las Cuevas, Gemma
    Drescher, Tom
    Netzer, Tim
    QUANTUM, 2019, 3
  • [38] Separability of mixed states of the quantum network of three nodes
    Gu, ZY
    Qian, SW
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (02) : 151 - 156
  • [39] Separability criteria for mixed three-qubit states
    Szalay, Szilard
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [40] On the Separability Criterion of Bipartite States with Certain Non-Hermitian Operators
    Ananth, N.
    Chandrasekar, V. K.
    Senthilvelan, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (08) : 2632 - 2643