共 50 条
Measurement of blood-brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data
被引:20
|作者:
Nguyen, Giang Truong
[1
]
Coulthard, Alan
[2
,3
]
Wong, Andrew
Sheikh, Nabeel
[4
]
Henderson, Robert
[4
]
O'Sullivan, John D.
[4
]
Reutens, David C.
[1
,4
]
机构:
[1] Univ Queensland, Ctr Adv Imaging, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Acad Discipline Med Imaging, Brisbane, Qld 4072, Australia
[3] Royal Brisbane & Womens Hosp, Dept Med Imaging, Brisbane, Qld, Australia
[4] Royal Brisbane & Womens Hosp, Dept Neurol, Brisbane, Qld, Australia
关键词:
Perfusion CT;
Blood-brain barrier permeability;
First-pass;
Delayed phase;
CEREBRAL-ARTERY INFARCTION;
TIME UPTAKE DATA;
HEMORRHAGIC TRANSFORMATION;
TECHNICAL IMPLEMENTATIONS;
GRAPHICAL EVALUATION;
REPERFUSION INJURY;
TRANSFER CONSTANTS;
THEORETIC BASIS;
RECANALIZATION;
THROMBOLYSIS;
D O I:
10.1016/j.nicl.2013.04.004
中图分类号:
R445 [影像诊断学];
学科分类号:
100207 ;
摘要:
Background and purpose: Increased blood-brain barrier permeability is believed to be associated with complications following acute ischemic stroke and with infarct expansion. Measurement of blood-brain barrier permeability requires a delayed image acquisition methodology, which prolongs examination time, increasing the likelihood of movement artefacts and radiation dose. Existing quantitative methods overestimate blood-brain barrier permeability when early phase CT perfusion data are used. The purpose of this study is to develop a method that yields the correct blood-brain barrier permeability value using first-pass perfusion CT data. Methods: We acquired 43 CT perfusion datasets, comprising experimental (n = 30) and validation subject groups (n = 13). The Gjedde-Patlak method was used to estimate blood-brain barrier permeability using first-pass (30-60 s after contrast administration) and delayed phase (30-200 s) data. In the experimental group, linear regression was used to obtain a function predicting first-pass blood-brain barrier permeability estimates from delayed phase estimates in each stroke compartment. The reliability of prediction with this function was then tested using data from the validation group. Results: The predicted delayed phase blood-brain barrier permeability was strongly correlated with the measured delayed phase value (r = 0.67 and 0.6 for experimental and validation group respectively; p < 0.01). Predicted and measured delayed phase blood-brain barrier permeability in each stroke compartment were not significantly different in both experimental and validation groups. Conclusion: We have developed a method of estimating blood-brain barrier permeability using first-pass perfusion CT data. This predictive method allows reliable blood-brain barrier permeability estimation within standard acquisition time, minimizing the likelihood of motion artefacts thereby improving image quality and reducing radiation dose. (C) 2013 The Authors. Published by Elsevier Inc.
引用
收藏
页码:658 / 662
页数:5
相关论文