Temperature tunable photonic band gap in polyvinylidene fluoride inverse opals

被引:5
|
作者
Yao, Jitan [1 ]
Wang, Jin [1 ]
Ji, Muwei [1 ]
Lan, Chuwen [1 ]
Liu, Wenmei [1 ]
Li, Bo [1 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Adv Mat Inst, Shenzhen 518055, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 108期
基金
中国国家自然科学基金;
关键词
CRYSTALS; EMISSION; ARRAYS; COLOR; STATE;
D O I
10.1039/c6ra24011a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inverse polyvinylidene fluoride (PVDF) opals with a temperature tunable photonic band gap (PBG) were fabricated by the sol-gel process using SiO2 opal templates. The samples exhibited an olivine to dark blue color after heat treatment at different temperatures. Their microregion reflection spectra showed that the inverse PVDF opal PBG blue-shifted from 573 nm to 498 nm when the treating temperature increased from 80 degrees C to 160 degrees C. This was due to a reduction of the inverse PVDF opal periodical size during the heat treatment process. Such inverse PVDF opals with temperature tunable PBGs have a great potential in device applications.
引用
收藏
页码:106370 / 106373
页数:4
相关论文
共 50 条
  • [21] Highly tunable photonic band gap in inverse shell non-close-packed structures
    Gaillot, DP
    Graugnard, ED
    King, JS
    Summers, CJ
    [J]. 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 2005, : 387 - 388
  • [22] Tunable photonic devices based on the temperature dependent photonic band gap in chiral nematic liquid crystals
    Huang, Yuhua
    Zhou, Ying
    Wu, Shin-Tson
    [J]. LIQUID CRYSTALS X, 2006, 6332
  • [23] Robust photonic band gap from tunable scatterers
    Zhang, WY
    Lei, XY
    Wang, ZL
    Zheng, DG
    Tam, WY
    Chan, CT
    Sheng, P
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (13) : 2853 - 2856
  • [24] Design and simulation of a tunable photonic band gap filter
    Thubthimthong, B.
    Chollet, F.
    [J]. MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) : 1421 - 1424
  • [25] Microfluidic tunable photonic band-gap device
    Domachuk, P
    Nguyen, HC
    Eggleton, BJ
    Straub, M
    Gu, M
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (11) : 1838 - 1840
  • [26] Strain-tunable photonic band gap crystals
    Kim, S
    Gopalan, V
    [J]. APPLIED PHYSICS LETTERS, 2001, 78 (20) : 3015 - 3017
  • [27] Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure
    Kubo, S
    Gu, ZZ
    Takahashi, K
    Fujishima, A
    Segawa, H
    Sato, O
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (26) : 8314 - 8319
  • [28] Photonic crystals based on opals and inverse opals: synthesis and structural features
    Klimonsky, S. O.
    Abramova, V. V.
    Sinitskii, A. S.
    Tretyakov, Yu D.
    [J]. RUSSIAN CHEMICAL REVIEWS, 2011, 80 (12) : 1191 - 1207
  • [29] Tungsten inverse opals:: The influence of absorption on the photonic band structure in the visible spectral region
    von Freymann, G
    John, S
    Schulz-Dobrick, M
    Vekris, E
    Tétreault, N
    Wong, S
    Kitaev, V
    Ozin, GA
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (02) : 224 - 226
  • [30] Photonic band-gap effects on photoluminescence of silicon nanocrystals embedded in artificial opals
    Valenta, J
    Linnros, J
    Juhasz, R
    Rehspringer, JL
    Huber, F
    Hirlimann, C
    Cheylan, S
    Elliman, RG
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (08) : 4471 - 4474