Machine Learning for Rapid QSTS Simulations using Neural Networks

被引:0
|
作者
Reno, Matthew J. [1 ]
Broderick, Robert J. [1 ]
Blakely, Logan [2 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Portland State Univ, Portland, OR 97201 USA
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Distribution system analysis with high penetrations of distributed PV requires quasi-static time-series (QSTS) analysis to capture the time-varying and time-dependent aspects of the system, but current QSTS algorithms are prohibitively burdensome and computationally intensive. This paper proposes to identify the key time periods throughout the year that need to be run with QSTS simulation and then predict the number of tap changes for the rest of the time periods using an ensemble of neural networks (NN). This ensemble NN approach is a new method of performing time-step simulations based solely on the input data and demonstrates high accuracy for reproducing the full baseline QSTS analysis while performing the simulation up to 4 times faster.
引用
收藏
页码:1573 / 1578
页数:6
相关论文
共 50 条
  • [21] Machine Learning Topological Invariants with Neural Networks
    Zhang, Pengfei
    Shen, Huitao
    Zhai, Hui
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (06)
  • [22] Machine learning uncertainties with adversarial neural networks
    Englert, Christoph
    Galler, Peter
    Harris, Philip
    Spannowsky, Michael
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (01):
  • [23] Advances in artificial neural networks and machine learning
    Prieto, Alberto
    Atencia, Miguel
    Sandoval, Francisco
    [J]. NEUROCOMPUTING, 2013, 121 : 1 - 4
  • [24] Deep Neural Networks and Explainable Machine Learning
    Maratea, Antonio
    Ferone, Alessio
    [J]. FUZZY LOGIC AND APPLICATIONS, WILF 2018, 2019, 11291 : 253 - 256
  • [25] A hybrid human recognition framework using machine learning and deep neural networks
    Sheneamer, Abdullah M.
    Halawi, Malik H.
    Al-Qahtani, Meshari H.
    [J]. PLOS ONE, 2024, 19 (06):
  • [26] Monthly discharge forecasting using wavelet neural networks with extreme learning machine
    Li BaoJian
    Cheng ChunTian
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (12) : 2441 - 2452
  • [27] Anomaly Detection in Power Generation Plants Using Machine Learning and Neural Networks
    Mulongo, Jecinta
    Atemkeng, Marcellin
    Ansah-Narh, Theophilus
    Rockefeller, Rockefeller
    Nguegnang, Gabin Maxime
    Garuti, Marco Andrea
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2020, 34 (01) : 64 - 79
  • [28] Using Visualization of Convolutional Neural Networks in Virtual Reality for Machine Learning Newcomers
    Meissler, Nadine
    Wohlan, Annika
    Hochgeschwender, Nico
    Schreiber, Andreas
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR), 2019, : 152 - 158
  • [29] Monthly discharge forecasting using wavelet neural networks with extreme learning machine
    LI Bao Jian
    CHENG Chun Tian
    [J]. Science China Technological Sciences, 2014, (12) : 2441 - 2452
  • [30] Monthly discharge forecasting using wavelet neural networks with extreme learning machine
    LI Bao Jian
    CHENG Chun Tian
    [J]. Science China(Technological Sciences)., 2014, 57 (12) - 2452