RNAct: Protein-RNA interaction predictions for model organisms with supporting experimental data

被引:79
|
作者
Lang, Benjamin [1 ]
Armaos, Alexandros [1 ]
Tartaglia, Gian G. [1 ,2 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Barcelona 08003, Spain
[2] ICREA, 23 Passeig Lluis Co, Barcelona 08010, Spain
[3] UPF, Dept Expt & Hlth Sci, Barcelona 08003, Spain
[4] Sapienza Univ Rome, Dept Biol Charles Darwin, Ple A Moro 5, I-00185 Rome, Italy
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
QUANTITATIVE PREDICTIONS; BINDING PROTEINS; IDENTIFICATION; SITES;
D O I
10.1093/nar/gky967
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-RNA interactions are implicated in a number of physiological roles as well as diseases, with molecular mechanisms ranging from defects in RNA splicing, localization and translation to the formation of aggregates. Currently, approximate to 1400 human proteins have experimental evidence of RNA-binding activity. However, only approximate to 250 of these proteins currently have experimental data on their target RNAs from various sequencing-based methods such as eCLIP. To bridge this gap, we used an established, computationally expensive protein-RNA interaction prediction method, catRAPID, to populate a large database, RNAct. RNAct allows easy lookup of known and predicted interactions and enables global views of the human, mouse and yeast protein-RNA interactomes, expanding them in a genome-wide manner far beyond experimental data (http://rnact.crg.eu).
引用
收藏
页码:D601 / D606
页数:6
相关论文
共 50 条
  • [31] Protein interaction maps for model organisms
    Walhout, AJM
    Vidal, M
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (01) : 55 - 62
  • [32] A systematic benchmark of machine learning methods for protein-RNA interaction prediction
    Horlacher, Marc
    Cantini, Giulia
    Hesse, Julian
    Schinke, Patrick
    Goedert, Nicolas
    Londhe, Shubhankar
    Moyon, Lambert
    Marsico, Annalisa
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [33] Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization
    Sanders, David W.
    Kedersha, Nancy
    Lee, Daniel S. W.
    Strom, Amy R.
    Drake, Victoria
    Riback, Joshua A.
    Bracha, Dan
    Eeftens, Jorine M.
    Iwanicki, Allana
    Wang, Alicia
    Wei, Ming-Tzo
    Whitney, Gena
    Lyons, Shawn M.
    Anderson, Paul
    Jacobs, William M.
    Ivanov, Pavel
    Brangwynne, Clifford P.
    CELL, 2020, 181 (02) : 306 - +
  • [34] Human protein-RNA interaction network is highly stable across mammals
    Aarthi Ramakrishnan
    Sarath Chandra Janga
    BMC Genomics, 20
  • [35] Computational analysis of hydrogen bonds in protein-RNA complexes for interaction patterns
    Kim, H
    Jeong, E
    Lee, SW
    Han, K
    FEBS LETTERS, 2003, 552 (2-3) : 231 - 239
  • [36] CLIP: A method for identifying protein-RNA interaction sites in living cells
    Ule, J
    Jensen, K
    Mele, A
    Darnell, RB
    METHODS, 2005, 37 (04) : 376 - 386
  • [37] SPECIFICITY OF PROTEIN-RNA AND PROTEIN-PROTEIN INTERACTION UPON ASSEMBLY OF TMV INVIVO AND INVITRO
    ATABEKOVA, TI
    TALIANSKY, ME
    ATABEKOV, JG
    VIROLOGY, 1975, 67 (01) : 1 - 13
  • [38] Inhibition of SARS-CoV-2 nucleocapsid protein-RNA interaction by guanosine oligomeric RNA
    Sekine, Ryoya
    Tsuno, Satsuki
    Irokawa, Hayato
    Sumitomo, Kazuhiro
    Han, Tianxue
    Sato, Yusuke
    Nishizawa, Seiichi
    Takeda, Kouki
    Kuge, Shusuke
    JOURNAL OF BIOCHEMISTRY, 2023, 173 (06): : 447 - 457
  • [39] Data Science Issues in Studying Protein-RNA Interactions with CLIP Technologies
    Chakrabarti, Anob M.
    Haberman, Nejc
    Praznik, Arne
    Luscombe, Nicholas M.
    Ule, Jernej
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 : 235 - 261
  • [40] Identification of protein-RNA interaction sites using the information of spatial adjacent residues
    Chen, Wei
    Zhang, Shao-Wu
    Cheng, Yong-Mei
    Pan, Quan
    PROTEOME SCIENCE, 2011, 9