RNAct: Protein-RNA interaction predictions for model organisms with supporting experimental data

被引:79
|
作者
Lang, Benjamin [1 ]
Armaos, Alexandros [1 ]
Tartaglia, Gian G. [1 ,2 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Barcelona 08003, Spain
[2] ICREA, 23 Passeig Lluis Co, Barcelona 08010, Spain
[3] UPF, Dept Expt & Hlth Sci, Barcelona 08003, Spain
[4] Sapienza Univ Rome, Dept Biol Charles Darwin, Ple A Moro 5, I-00185 Rome, Italy
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
QUANTITATIVE PREDICTIONS; BINDING PROTEINS; IDENTIFICATION; SITES;
D O I
10.1093/nar/gky967
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-RNA interactions are implicated in a number of physiological roles as well as diseases, with molecular mechanisms ranging from defects in RNA splicing, localization and translation to the formation of aggregates. Currently, approximate to 1400 human proteins have experimental evidence of RNA-binding activity. However, only approximate to 250 of these proteins currently have experimental data on their target RNAs from various sequencing-based methods such as eCLIP. To bridge this gap, we used an established, computationally expensive protein-RNA interaction prediction method, catRAPID, to populate a large database, RNAct. RNAct allows easy lookup of known and predicted interactions and enables global views of the human, mouse and yeast protein-RNA interactomes, expanding them in a genome-wide manner far beyond experimental data (http://rnact.crg.eu).
引用
收藏
页码:D601 / D606
页数:6
相关论文
共 50 条
  • [1] Predictions of protein-RNA interactions
    Cirillo, Davide
    Agostini, Federico
    Gaetano Tartaglia, Gian
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2013, 3 (02) : 161 - 175
  • [2] PRD: A protein-RNA interaction database
    Fujimori, Shigeo
    Hino, Katsuya
    Saito, Ayumu
    Miyano, Satoru
    Miyamoto-Sato, Etsuko
    BIOINFORMATION, 2012, 8 (15) : 729 - 730
  • [3] Methods for Identification of Protein-RNA Interaction
    Xu, Juan
    Wang, Zishan
    Jin, Xiyun
    Li, Lili
    Pan, Tao
    NON-CODING RNAS IN COMPLEX DISEASES: A BIOINFORMATICS PERSPECTIVE, 2018, 1094 : 117 - 126
  • [4] Organism specific protein-RNA recognition: A computational analysis of protein-RNA complex structures from different organisms
    Raju, Nagarajan
    Chothani, Sonia Pankaj
    Ramakrishnan, C.
    Sekijima, Masakazu
    Gromiha, M. Michael
    BMC BIOINFORMATICS, 2016, 17 : 205 - 206
  • [5] Transfer RNA binding to human serum albumin: A model for protein-RNA interaction
    Malonga, Herman
    Neault, Jean-Francois
    Tajmir-Riahi, Heidar-Ali
    DNA AND CELL BIOLOGY, 2006, 25 (07) : 393 - 398
  • [6] Chromodomains are protein-RNA interaction modules
    Akhtar, A
    Zink, D
    Becker, PB
    NATURE, 2000, 407 (6802) : 405 - 409
  • [7] PRIdictor: Protein-RNA Interaction predictor
    Tuvshinjargal, Narankhuu
    Lee, Wook
    Park, Byungkyu
    Han, Kyungsook
    BIOSYSTEMS, 2016, 139 : 17 - 22
  • [8] Neurodegenerative diseases: Quantitative predictions of protein-RNA interactions
    Cirillo, Davide
    Agostini, Federico
    Klus, Petr
    Marchese, Domenica
    Rodriguez, Silvia
    Bolognesi, Benedetta
    Gaetano Tartaglia, Gian
    RNA, 2013, 19 (02) : 129 - 140
  • [9] From Protein-RNA Predictions toward a Peptide-RNA Code
    Brannan, Kristopher W.
    Yeo, Gene W.
    MOLECULAR CELL, 2016, 64 (03) : 437 - 438
  • [10] STRUCTURE OF TOMATO BUSHY STUNT VIRUS - MODEL FOR PROTEIN-RNA INTERACTION
    CHAUVIN, C
    WITZ, J
    JACROT, B
    JOURNAL OF MOLECULAR BIOLOGY, 1978, 124 (04) : 641 - 651