Periodic geodesics on generic translation surfaces

被引:0
|
作者
Vorobets, Y [1 ]
机构
[1] Ukrainian NAS, Pidstryhach Inst Appl Problems Mech & Math, UA-79060 Lvov, Ukraine
来源
关键词
translation surface; moduli space; periodic geodesic; cylinder;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of the paper is to study properties of periodic geodesics on translation surfaces that hold for generic elements of the moduli space of translation surfaces. These include quadratic asymptotics of various growth functions and uniform distribution of directions.
引用
收藏
页码:205 / 258
页数:54
相关论文
共 50 条
  • [31] CLOSED GEODESICS IN LORENTZIAN SURFACES
    Suhr, Stefan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (03) : 1469 - 1486
  • [32] TYPICAL GEODESICS ON FLAT SURFACES
    Dankwart, Klaus
    CONFORMAL GEOMETRY AND DYNAMICS, 2011, 15 : 188 - 209
  • [33] Connecting geodesics on smooth surfaces
    Hannes Thielhelm
    Alexander Vais
    Daniel Brandes
    Franz-Erich Wolter
    The Visual Computer, 2012, 28 : 529 - 539
  • [34] WINDING OF GEODESICS ON RIEMANN SURFACES
    LEJAN, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (10): : 763 - 765
  • [35] Escaping geodesics of Riemannian surfaces
    Fernández, JL
    Melián, MV
    ACTA MATHEMATICA, 2001, 187 (02) : 213 - 236
  • [36] CLOSED GEODESICS ON RIEMANN SURFACES
    JORGENSEN, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (01) : 140 - 142
  • [37] Consequences of contractible geodesics on surfaces
    Denvir, J
    MacKay, RS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (11) : 4553 - 4568
  • [38] Geodesics and soap bubbles in surfaces
    Hass, J
    Morgan, F
    MATHEMATISCHE ZEITSCHRIFT, 1996, 223 (02) : 185 - 196
  • [39] SIMPLE GEODESICS ON RIEMANN SURFACES
    JORGENSEN, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 86 (01) : 120 - 122
  • [40] Long Geodesics on Convex Surfaces
    Akopyan, Arseniy
    Petrunin, Anton
    MATHEMATICAL INTELLIGENCER, 2018, 40 (03): : 26 - 31