A finite element method for singular solutions of the Navier-Stokes equations on a non-convex polygon

被引:18
|
作者
Choi, Hyung Jun [1 ]
Kweon, Jae Ryong [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Stokes' corner singularity; Finite element method; Error estimate; MULTIGRID METHODS; POISSON EQUATION; APPROXIMATION; COEFFICIENTS; COMPUTATION; DOMAINS; SYSTEM;
D O I
10.1016/j.cam.2015.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown in Choi and Kweon (2013) that a solution of the Navier-Stokes equations with no-slip boundary condition on a non-convex polygon can be written as [u, p] = C-1[Phi(1), phi(1)]+C-2[Phi(2), phi(2)]+[u(R), p(R)] near each non-convex vertex, where [u(R), p(R)] is an element of H-2 x H-1, [Phi(i), phi(i)] are corner singularity functions for the Stokes problem with no-slip condition, and C-i is an element of R are coefficients which are called the stress intensity factors. We design a finite element method to approximate the coefficients C-i and the regular part [u(R), p(R)], show the unique existence of the approximations, and derive their error estimates. Some numerical examples are given, confirming convergence rates for the approximations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 362
页数:21
相关论文
共 50 条
  • [31] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [32] NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS BY FINITE-ELEMENT METHOD
    CHENG, RT
    [J]. PHYSICS OF FLUIDS, 1972, 15 (12) : 2098 - 2105
  • [33] A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations
    Barrenechea, Gabriel R.
    Chouly, Franz
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (01): : 54 - 68
  • [34] A distributed finite element method for solving the incompressible Navier-Stokes equations
    DeSantiago, E
    Law, KH
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (24) : 4243 - 4258
  • [35] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [36] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Lina Song
    Yanren Hou
    Haibiao Zheng
    [J]. Journal of Scientific Computing, 2013, 55 : 255 - 267
  • [37] A stabilised characteristic finite element method for transient Navier-Stokes equations
    Zhang, Tong
    Si, Zhiyong
    He, Yinnian
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (09) : 369 - 381
  • [38] Stabilized finite-element method for the stationary Navier-Stokes equations
    He, YN
    Wang, AW
    Mei, LQ
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) : 367 - 380
  • [39] The postprocessed mixed finite-element method for the Navier-Stokes equations
    Ayuso, B
    García-Archilla, B
    Novo, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1091 - 1111
  • [40] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174