Large-Scale Experimental Evaluation of Cluster Representations for Multiobjective Evolutionary Clustering

被引:29
|
作者
Garcia-Piquer, Alvaro [1 ]
Fornells, Albert [2 ]
Bacardit, Jaume [3 ]
Orriols-Puig, Albert [2 ]
Golobardes, Elisabet [2 ]
机构
[1] Inst Space Sci, Bellaterra 08193, Spain
[2] La Salle Univ Ramon Llull, Grp Recerca Sistemes Intelligents, Barcelona 08022, Spain
[3] Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
Clustering; data mining; multiobjective evolutionary algorithms; GENETIC ALGORITHM; OPTIMIZATION; VALIDATION;
D O I
10.1109/TEVC.2013.2281513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective evolutionary clustering algorithms are based on the optimization of several objective functions that guide the search following a cycle based on evolutionary algorithms. Their capabilities allow them to find better solutions than with conventional clustering algorithms if the suitable individual representation is selected. This paper provides a detailed analysis of the three most relevant and useful representations-prototype-based, label-based, and graph-based-through a wide set of synthetic data sets. Moreover, they are also compared to relevant conventional clustering algorithms. Experiments show that multiobjective evolutionary clustering is competitive with regard to other clustering algorithms. Furthermore, the best scenario for each representation is also presented.
引用
收藏
页码:36 / 53
页数:18
相关论文
共 50 条
  • [1] Counterintuitive Experimental Results in Evolutionary Large-Scale Multiobjective Optimization
    Pang, Lie Meng
    Ishibuchi, Hisao
    Shang, Ke
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (06) : 1609 - 1616
  • [2] Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering
    Ding, Zhuanlian
    Cao, Lve
    Chen, Lei
    Sun, Dengdi
    Zhang, Xingyi
    Tao, Zhifu
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [3] Evolutionary Multitasking for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Feng, Liang
    Wong, Ka-Chun
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 863 - 877
  • [4] Evolutionary Large-Scale Multiobjective Optimization: Benchmarks and Algorithms
    Liu, Songbai
    Lin, Qiuzhen
    Wong, Ka-Chun
    Li, Qing
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (03) : 401 - 415
  • [5] An adaptive sparse large-scale multiobjective evolutionary algorithm
    Qiu, Feiyue
    Hu, Huizhen
    Ren, Jin
    Wang, Liping
    Qiu, Qicang
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 403 - 406
  • [6] A dual decomposition strategy for large-scale multiobjective evolutionary optimization
    Yang, Cuicui
    Wang, Peike
    Ji, Junzhong
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 3767 - 3788
  • [7] A Multivariation Multifactorial Evolutionary Algorithm for Large-Scale Multiobjective Optimization
    Feng, Yinglan
    Feng, Liang
    Kwong, Sam
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 248 - 262
  • [8] An Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems
    Tian, Ye
    Zhang, Xingyi
    Wang, Chao
    Jin, Yaochu
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 380 - 393
  • [9] Learning to Accelerate Evolutionary Search for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Li, Jun
    Lin, Qiuzhen
    Tian, Ye
    Tan, Kay Chen
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 67 - 81
  • [10] Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization
    He, Cheng
    Cheng, Ran
    Tian, Ye
    Zhang, Xingyi
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,