On fractional Poincar, inequalities

被引:41
|
作者
Hurri-Syrjanen, Ritva [1 ]
Vahakangas, Antti V. [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
来源
基金
芬兰科学院;
关键词
Lipschitz Domain; Dyadic Cube; Bound Lipschitz Domain; Common Face; Uniform Domain;
D O I
10.1007/s11854-013-0015-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that fractional (p, p)-Poincar, inequalities and even fractional Sobolev-Poincar, inequalities hold for bounded John domains, and especially for bounded Lipschitz domains. We also prove sharp fractional (1,p)-Poincar, inequalities for s-John domains.
引用
收藏
页码:85 / 104
页数:20
相关论文
共 50 条
  • [21] CONNECTIVITY CONDITIONS AND BOUNDARY POINCARÉ INEQUALITIES
    Tapiola, Olli
    Tolsa, Xavier
    ANALYSIS & PDE, 2024, 17 (05): : 1831 - 1870
  • [22] Poincar,-Hopf inequalities for periodic orbits
    Bertolim, M. A.
    GEOMETRIAE DEDICATA, 2012, 160 (01) : 147 - 167
  • [23] Discrete isoperimetric and Poincaré-type inequalities
    S. G. Bobkov
    F. Götze
    Probability Theory and Related Fields, 1999, 114 : 245 - 277
  • [24] Poincar, inequalities and the sharp maximal inequalities with -norms for differential forms
    Lu, Yueming
    Bao, Gejun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [25] A fractional gradient representation of the Poincar, equations
    Chen, Xiangwei
    Zhao, Gangling
    Mei, Fengxiang
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 579 - 582
  • [26] A fractional gradient representation of the Poincaré equations
    Xiangwei Chen
    Gangling Zhao
    Fengxiang Mei
    Nonlinear Dynamics, 2013, 73 : 579 - 582
  • [27] Computable majorants of constants in the Poincaré and Friedrichs inequalities
    S. I. Repin
    Journal of Mathematical Sciences, 2012, 186 (2) : 307 - 321
  • [28] Poincaré inequalities in quasihyperbolic boundary condition domains
    Ritva Hurri-Syrjänen
    Niko Marola
    Antti V. Vähäkangas
    Manuscripta Mathematica, 2015, 148 : 99 - 118
  • [29] Poincaré inequalities and the sharp maximal inequalities with Lφ-norms for differential forms
    Yueming Lu
    Gejun Bao
    Journal of Inequalities and Applications, 2013
  • [30] On how Poincaré inequalities imply weighted ones
    Martin Rathmair
    Monatshefte für Mathematik, 2019, 188 : 753 - 763