AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1

被引:286
|
作者
Vaucheret, H [1 ]
Mallory, AC
Bartel, DP
机构
[1] INRA, Biol Cellulaire Lab, Inst Jean Pierre Bourgin, F-78026 Versailles, France
[2] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[3] Howard Hughes Med Inst, Cambridge, MA 02142 USA
[4] MIT, Dept Biol, Cambridge, MA 02139 USA
关键词
D O I
10.1016/j.molcel.2006.03.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis ARGONAUTE1 (AGO1) encodes the RNA slicer enzyme of the microRNA (miRNA) pathway and is regulated by miR168-programmed, AGO1-catalyzed mRNA cleavage. Here, we describe two additional regulatory processes required for AGO1 homeostasis: transcriptional coregulation of MIR168 and AGO1 genes, and posttranscriptional stabilization of miR168 by AGO1. Disrupting any of these regulatory processes by using mutations or transgenes disturbs a proper functioning of the miRNA pathway. In contrast, minor perturbation leads to fine-tuned posttranscriptional adjustment of miR168 and AGO1 levels, thereby maintaining a proper balance of other miRNAs, which, together with AGO1, control the mRNA levels of miRNA targets. We suggest that miR168 stabilization occurs at the level of silencing-complex assembly and that modulating the efficiency of assembling miRNA-programmed silencing complexes will also be important in other contexts.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [21] AGO1 defines a novel locus of Arabidopsis controlling leaf development
    Bohmert, K
    Camus, I
    Bellini, C
    Bouchez, D
    Caboche, M
    Benning, C
    EMBO JOURNAL, 1998, 17 (01): : 170 - 180
  • [22] Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions
    Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10065, United States
    不详
    不详
    不详
    不详
    不详
    Plant J., 2 (292-304):
  • [23] Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions
    Wang, Huan
    Zhang, Xiuren
    Liu, Jun
    Kiba, Takatoshi
    Woo, Jongchan
    Ojo, Tolulope
    Hafner, Markus
    Tuschl, Thomas
    Chua, Nam-Hai
    Wang, Xiu-Jie
    PLANT JOURNAL, 2011, 67 (02): : 292 - 304
  • [24] Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma
    Turchinovich, Andrey
    Burwinkel, Barbara
    RNA BIOLOGY, 2012, 9 (08) : 1066 - 1075
  • [25] DNA Hypomethylation Underlies Epigenetic Swapping between AGO1 and AGO1-V2 Isoforms in Tumors
    Fain, Jean S.
    Wangermez, Camille
    Loriot, Axelle
    Denoue, Claudia
    De Smet, Charles
    EPIGENOMES, 2024, 8 (03)
  • [26] AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression
    Fernandez-Nohales, P.
    Domenech, M. J.
    Martinez de Alba, A. E.
    Micol, J. L.
    Ponce, M. R.
    Madueno, F.
    ANNALS OF BOTANY, 2014, 114 (07) : 1471 - 1481
  • [27] Transcriptional repression of Myc underlies the tumour suppressor function of AGO1 in Drosophila
    Zaytseva, Olga
    Mitchell, Naomi C.
    Guo, Linna
    Marshall, Owen J.
    Parsons, Linda M.
    Hannan, Ross D.
    Levens, David L.
    Quinn, Leonie M.
    DEVELOPMENT, 2020, 147 (11):
  • [28] 家蚕AGO1蛋白结合RNA的分离与鉴定
    杨帆
    高珍
    马亚飞
    蒋彩英
    吕正兵
    盛清
    聂作明
    蚕业科学, 2019, 45 (03) : 346 - 352
  • [29] Novel functional small RNAs are selectively loaded onto mammalian Ago1
    Yamakawa, Natsuko
    Okuyama, Kazuki
    Ogata, Jun
    Kanai, Akinori
    Helwak, Aleksandra
    Takamatsu, Masako
    Imadome, Ken-ichi
    Takakura, Kohei
    Chanda, Bidisha
    Kurosaki, Natsumi
    Yamamoto, Haruna
    Ando, Kiyoshi
    Matsui, Hirotaka
    Inaba, Toshiya
    Kotani, Ai
    NUCLEIC ACIDS RESEARCH, 2014, 42 (08) : 5289 - 5301
  • [30] De novo variants in AGO1 recapitulate a heterogeneous neurodevelopmental disorder phenotype
    Niu, Yue
    Qian, Qiaoqiao
    Li, Juan
    Gong, Pan
    Jiao, Xianru
    Mao, Xiao
    Xiao, Bo
    Long, Lili
    Yang, Zhixian
    CLINICAL GENETICS, 2022, 101 (04) : 459 - 465