Explicit Reconstruction of Riemann Surface with Given Boundary in Complex Projective Space

被引:2
|
作者
Agaltsov, A. D. [1 ]
Henkin, G. M. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[2] Univ Paris 06, Case 247, F-75252 Paris, France
关键词
Riemann surface; Reconstruction algorithm; Burgers equation; Cauchy-type formulas;
D O I
10.1007/s12220-014-9522-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a numerically realizable method for reconstruction of a complex curve with known boundary and without compact components in complex projective space.
引用
收藏
页码:2450 / 2473
页数:24
相关论文
共 50 条
  • [21] RIEMANN BOUNDARY VALUE PROBLEMS WITH GIVEN PRINCIPAL PART
    Li Weifeng
    Du Jinyuan
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (01) : 25 - 32
  • [22] The symplectic nature of the space of projective connections on Riemann surfaces
    Kawai, S
    MATHEMATISCHE ANNALEN, 1996, 305 (01) : 161 - 182
  • [23] RIEMANN SURFACES OF GIVEN BOUNDARY IN CP2
    DOLBEAULT, P
    HENKIN, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (01): : 27 - 32
  • [24] EXPLICIT FORMULAS FOR THE SOLUTIONS OF THE CAUCHY-RIEMANN EQUATION IN GIVEN DOMAINS
    HACHAICHI, SM
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1982, 35 (10): : 1337 - 1340
  • [25] The BGG Complex on Projective Space
    Eastwood, Michael G.
    Gover, A. Rod
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [26] Quantization on the complex projective space
    Mondal, Bishwarup
    Dutta, Satyaki
    Heath, Robert W., Jr.
    DCC 2006: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2006, : 242 - +
  • [27] Circles in a complex projective space
    Adachi, T
    Maeda, S
    Udagawa, S
    OSAKA JOURNAL OF MATHEMATICS, 1995, 32 (03) : 709 - 719
  • [28] BRANCHED PROJECTIVE STRUCTURES ON A RIEMANN SURFACE AND LOGARITHMIC CONNECTIONS
    Biswas, Indranil
    Dumitrescu, Sorin
    Gupta, Subhojoy
    DOCUMENTA MATHEMATICA, 2019, 24 : 2299 - 2337
  • [29] Projective structures on Riemann surface and natural differential operators
    Biswas, Indranil
    Dumitrescu, Sorin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 72
  • [30] Stein neighborhoods for bounded Riemann surfaces embedded in the projective space
    Mihalache, N
    BULLETIN DES SCIENCES MATHEMATIQUES, 1996, 120 (04): : 397 - 404